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Abstract 
 
 
 
 

In a social network there can be many different kinds of links or edges between the 

nodes. Those could for example be social contacts, hyper-references or phone-calls. 

Link Prediction is the problem of predicting edges that either don't yet exist at the given 

time t or exist, but have not been discovered, are likely to occur in the near future. We 

develop approaches to link prediction based on measures for analyzing the proximity 

of nodes in a network. Consider a co-authorship network among scientists, e.g. two 

scientists who are close in the network will have col-leagues in common, so they are 

more likely to collaborate in the near future. Our goal is to make this intuitive notion 

precise and to understand which measures of proximity in a network lead to the most 

accurate link predictions. Link prediction algorithms can be classified into three 

categories: Node neighborhood approaches, Path based approaches and Meta 

approaches. Node neighborhood approach is based on local features of a network, 

focusing mainly on the nodes structure (i.e. based on the number of common friends 



that two users share). The local-based measures are: Common Neighbors, Jaccard’s 

coefficient, Adamic/Adar and Preferential Attachment. Path based algorithms considers 

the ensemble of all paths between two nodes. The Path based algorithms are: Katz, Sim-

Rank, Hitting Time and Commute Time, Rooted PageRank, Prop Flow and High-

Performance Link Prediction. Meta-Approaches alter the data before being passed to 

one of the path-based approaches. The algorithms are: Low-rank approximation, 

Unseen bigrams and Clustering.
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1.1 Introduction to Social Networks 



 

 

A Social Structure consists of nodes(Individuals or Organizations) and nodes are 

connected by different types of relationships. A set of social actors or nodes(such 

as individuals or organizations) and a set of the dyadic ties between these nodes 

constitute a social network. For example scientists in a discipline, employees in a 

large company, business leaders can be thought as nodes in a network and co-

authors of a paper, working on a project, serve together on board can be thought 

as edges respectively. The idea behind Social Networks is to create opportunities 

to develop friendships, share information and promote business in a network. OSN 

like Facebook and Twitter have become important part of daily life of millions of 

people. The enormous growth and dynamics of these networks has led to several 

researches that examine the network properties i.e. structural and behavioral 

properties of large scale social networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1: Social Network 
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1.2 Social Network Analysis 
 

 

Social network analysis(SNA) is in depth analysis of social networks. SNA is the 

mapping and measuring of relationships, links and owes between nodes(people, 

groups, organizations, computers) and many other connected entities which pro-



vides some knowledge and information. The vertices or nodes in the network are 

the people and groups while the links show relationships or owes between the 

nodes. We can do visual and a mathematical analysis of human relationships 

through SNA that helps us to make sense out of the social network, to and the 

complex structure of social networks, to understand the evolution of social net-

works, network dynamics and to discover complex communication patterns and 

characteristic features of the network. 

 
 
 

1.3 Tasks Of Social Network Analysis 
 

 

Social networks are dynamic by nature. They change very quickly over a specific 

interval. Continuously new relationships establish between nodes and many old 

relationships break. These relational changes(when people become friends through 

common friends), characteristics of the nodes, characteristics of pairs of actors or link 

weights and random unexplained events in sequences the graph characteristics. The 

key tasks of SNA include different measures to rank nodes(or edges), Link prediction 

problem, Inferring social networks from social events, Viral marketing, Community 

detection, Design of incentives in networks, Determining implicit social hierarchy, 

Network formation, Spars cation of social networks(with purpose). There are many 

measures to rank nodes like degree centrality, closeness central-ity, clustering coe 

cient, betweenness centrality, Katz centrality and Eigen vector centrality. Link 

prediction is predicting the links that does not exist or exist, but not known and have 

probability to occur in the near future. Viral marketing deals with exploiting social 

connectivity patterns of users to propagate the awareness of product. Community 

detection involves graph partitioning based on activities over the social network and 

determining the dense sub graphs in a social network. In designing the incentives, only 

the person who answers the query is rewarded, with no reward for the intermediaries. 

Since individuals are often rational and intelligent, they may not participate in 

answering the queries unless
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some kind of incentives are provided. SNA has many applications like informa-

tion sharing, Information sharing, Understand the spread of diseases, Marketing 

in e-Commerce and e-Business, determine the in entail entities, build e active 

social and political campaign, Predict future events, tracking terrorists and 

location based crowdsourcing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: Community Detection in Social Networks 
 
 
 
 

1.4 Link Prediction Problem 
 

 

Different kind of links or edges between the nodes exist in a social network. For 

example, social contacts, phone-calls or hyper-references. On analysis of social 

networks, there can be many information about the linkage between the nodes that 

are not discovered or unknown at a given point of time. Link Prediction is the 

problem of predicting links that either dont yet exist at the given time t or exist, but 

unknown up to this time. Given a picture of a social network(nodes and links) at 

time t, we need to predict accurately the links that will be added to the network 

during the interval from time t to a given future time t+1. In effect, the link prediction 

problem concentrates on to what extent can the evolution of a social network be 

modelled by using intrinsic features of the network itself? Let
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us consider a co-authorship network among researchers, for example, there 

are di erent reasons, outside to the network, why two researchers who have 

never written a paper together will do so in the next few years. Or, when one of 

the researchers changes institutions, they may come geographically very close. 

Such interactions are be hard to predict. But by studying the network 

characteristics, we can predict the possible links that are going to form. Our 

objective is to make this intuitive notion very exact, and to understand which 

measures of proximity in a graph lead to accurate predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Link Prediction in Social Networks 
 
 

The link prediction problem is also deals with the problem of getting missing 

links from a known network, in a number of elds. It involves prediction of addi-

tional links that are not directly visible currently, are likely to exist in a network 

based on observable data. It considers a static picture of the network, rather 

than taking network evolution and network dynamics. It also considers speci c 

prop-erties of the nodes in the network, rather than computing the power of 

prediction methods that focuses on the graph structure. 

 
 
 

1.5 Application of Link Prediction 
 

 

Apart from its role as a basic question in social network formation, the link pre-

diction problem could be related to a number of interesting applications of so-cial 

networks. It is found that a large and medium organisation like a company can bene 

t from the involvement within the social network among its employees. These bene 

ts to supplement the organisation hierarchy de ned by the organiza-tion. E ective 

and e cient methods for link prediction could be used to analyse and study such a 

social network, and suggest interactions that have not yet been
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utilized within the organization, more likely to form. Link Prediction has a great 

role in security research, largely inspired by the problem of controlling terrorist 

networks and predicting their future involvement. In bioinformatics, e cient link 

prediction techniques can be used to predict interactions between proteins. In 

e-commerce it helps in building the recommendation systems so that helps in 

viral marketing and e ective product awareness.



 
 
 
 
 
 
 
 

 

Chapter 2 
 
 
 
 

Literature Review 
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Given a social network G(V; E) in which an edge represents some kind of 

interactions between its vertices on nodes at a given time t. Suppose we have 

a snapshot of a social network at a given time. We choose four times t0 < t00 < 

t1 < t01, and give our algorithm to predict links that are likely to be formed in the 

near future from the network G[t0; t00]. That results in predicting new links, not 

present in G[t0; t00], that are expected to appear in the network G[t1; t01]. We 

refer to [t0; t00] as the training interval and [t1; t01] as the test interval [1]. 

 

The most basic approach for similarity between any pair of nodes is by taking 

the length of their shortest path in graph. We rank pairs of nodes in descending 

order of score(x; y), where score(x; y) is the negative of the shortest path length 

between x and y. We take a snapshot of a social network as training set and predict 

the interactions among the nodes of training set that are likely to occur in near 

future.The algorithms are classi ed as belows [2]. 

 
 
 

2.1 NODE NEIGHBORHOOD ALGORITHMS 
 

 

Node neighborhood meaning the nodes directly connected to the two given nodes. 

It is simple technique which traverse only paths of length 2. For any node A it check 

the neighbors of neighbour of A and computes their similarity with A. It considers 

only local features of a network, focusing mainly on the nodes structure(i.e. based 

on the number of common friends that two users share). 

 

 

2.1.1 Common Neighbors 
 
 

The Common Neighbors method provide a measure for similarity by 

calculating the intersection of the sets of neighbors of the nodes to predict 

future linkage. The Common Neighbors(CN) is de ned as follows 

 

CN(x; y) := (x) (y) 
 
 

This measurement is based on the idea that two nodes a and b have an 

increased probability to connect if they have a shared neighbor c. With a 

growing number of shared neighbors this probability grows even higher.
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The weighted Common Neighbors(CN w) is de ned as follows where w(x; 

y) is the number of interactions between the nodes x and y. 

 

 

X 

w x; z ) + w(y; z) 
 

CN w(x; y) := 
(   

 

    2 
 

z (x)\ (y) 
 

 

2.1.2 Jaccard coe  cient 
 
 

Jaccards coe cient measures number of the features(neighbors) that are 

shared between two nodes commensurate to all features that either one of the 

nodes has. Jaccards coe cient is a normalized variation of Common 

Neighbors [? ]R7). The Jacard coe cient is de ned as follows 

J(x; y) := (x) \ (y) 
 

(x) [ (y) 
 
 

This is the Common Neighbors measurement normalized by the union of 

the node neighborhoods. 
 
 
 

2.1.3 Adamic/Adar 
 
 

It is a measurement that compares how many attributes two nodes have in com- 
 

mon.  They rate items that are unique to a few users more heavily than items 
 

shared amongst a huge group of users. This measurement can easily be adjusted 
 

in the context of node neighborhood by looking at shared neighbors as an at- 
 

tribute. Therefore the sum over the shared neighbors inverse of the logarithms of 
 

their neighborhoods is proposed [3]. 
 

The Adamic/Adar is de ned as follows 
 

X 1 
AA(x; y) :=  

logj (z)j 
z (x)\ (y) 

 

 

The weighted Adamic/Adar (AAw) is de ned as follows where w(x; y) is the 

number of interactions between the nodes x and y [4]. 
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 X w(x; z) + w(y; z) 1 
 

  

 

  

  P  

AAw(x; y) := 
z (x)\ (y) 

2 
:
log  z0 " (z) w(z0; z) 

 

    
 

 
 

2.1.4 Preferential Attachment 
 
 

Preferential Attachment is based on the hypothesis that a node x will get new 

neighbors faster than a node y given y has less neighbors than x. So the 

probability that a node will form a new link varies with number of its present 

neighbors. The likelihood of two nodes being connected by an edge based on 

preferential attachment is measured by multiplying the number of their 

neighbors [5]. The Preferential Attachment is de ned as follows 

 

P A(x; y) := (x): (y) 
 
 
 

The weighted Preferential Attachment (P Aw) is de ned as follows where 

w(x; y) is the number of interactions between the nodes x and y: 

 

X 

P Aw(x; y) := w(x; x
0
): y0 " (y)w(y

0
; y)  

x; (x) 
 

 

2.2 PATH BASED ALGORITHMS 
 

 

Some measurements of link prediction take all paths between two nodes in consid-

eration. The computation of graphs that take the entire graph in consideration is by 

nature much more complex than node neighborhood algorithms. 

 

 

2.2.1 Katz 
 
 

A measurement that takes all paths between two nodes in consideration while 

rating short paths more heavily. The measurement exponentially reduce the 

con-tribution of a path to the measure in order to give less weightage longer 

paths. Therefore it uses a factor of l where l is the path length.
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The Katz is de ned as follows 
 

1 
X 

K(x; y) := l
:jpaths

<l>
x;yj  

l=1 
 

where paths<l>
x;y the set of all paths from source x to destination y that have 

the path length l. 
 
 

Unweighted : paths<l>
x;y = 1, if x and y have collaborated and 0 otherwise 

 

Weighted : paths
<l>

x;y is the number of times that x and y have collaborated 
 
 

The can be used to control how much the length of the paths should be 

considered. A very small concludes to an algorithm where paths of length three 

or more are taken much less into account and therefor the algorithm converges 

node neighborhood algorithms. It has roughly cubic complexity as it requires 

matrix inversion [6]. 

 

 

2.2.2 SimRank 
 
 

If two nodes are referenced by more similar objects, then the two nodes have 

large similarity value. Every object obviously has a similarity score of 1 to itself. 

Node x and node y are then similar to the degree they are joined to similar 

neighbors [7]. 
 

The SimRank is de ned as follows 
 
 

S(x; x) := 1  
P P 

a (x) b (y) 
S(x; y) 

S(x; y) :=  :  
(x): (y) 

 

is a constant with [0; 1]. The constant can be thought of as a con dence 

level. If you consider a situation in which a and b are both neighbors to c, than 

obviously the similarity of c to itself is 1, but we do not want to conclude that 
 

s(a; b) = s(c; c) = 1. Instead we let s(a; b) = s(x; x) because we are not as con 

dent about the similarity of a and b as we are about s(x; x) = 1.
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2.2.3 Hitting Time and Commute Time 
 
 

Starting from a node x a random walk on a given graph moves iteratively over 

the graph while choosing the next node each step at random. The expected 

number of steps to get from x to y via a random walk is de ned as the Hitting 

Time H(x; y). A short hitting time implies node similarity and therefor a 

heightened chance of future linking. The commute time C(x; y) is a variant of 

Hitting time which is useful for undirected graphs, because the hitting time is 

not symmetric. Therefore it is de ned as follows: 

 

 

C(x; y) := H(x; y) + H(y; x) 
 

 

The commute time can have high variance, hence, prediction by this feature 

can be poor. If z is a node with high stationary probability far o x and y, then a 

random walker would probably reach the neighborhood of z. To avoid that we 

can use reset the random walker to x with a xed probability of . 

 

two normalized versions Hitting Time normalized (Hn) and Commute-Time 

normalized (Cn) are de ned where x is the stationary probability of x to safeguard 

it against vertices with a very high : 
 

 

Hn(x; y) := H(x; y): y 
 

Cn(x; y) := (H(x; y): y + H(y; x): x) 
 
 
 

2.2.4 Rooted PageRank 
 
 

Rooted PageRang is a modi cation of the Page Rank measure (which is an at-

tribute of a single vertex) for link prediction. It is the amount of step from x to y 

with a probability of to return to x each step (and 1 to go to a random neighbor). 

This metric is asymmetric and can be made symmetric by summing with the 

counterpart where the role of x and y are reversed [8]. 
 

The rooted pagerank(RPR) between all node pairs is calculated as follows: Let 

D be a diagonal degree matrix de ned as:
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X 
D[i; i] := A[i; j]  

j 
 

And let N be the following matrix with normalized row sums. 
 
 
 

N := D 1 
 

Then the Rooted Pagerank can be calculated as 
 
 
 

RP R := (1 )(I N) 1 
 
 
 

2.2.5 PropFlow and High-Performance Link Prediction 
 
 

The unsupervised PropFlow method calculates the probability that a random 

walker reaches node y from node x in l steps or fewer while using link weights 

as transition probabilities. If the algorithms revisits any node including x or if it 

reaches y the algorithm terminates. When compared to Rooted PageRank the 

algorithm is more localized and is insensitive to topologic noise far from the 

source node. It is faster to compute because it does not require random resets. 

High-Performance Link Prediction as a framework for link prediction. They 

distinguish between two variants: 

 
 

HPLP: Does not use the existing unsupervised methods, but only simple 

Measures like In- and Out-Degree, Max. Flow, Shortest Paths or PropFlow 

 

HPLP+: Uses the full feature set adding Adamic/Adar, Jaccards coe 

cient, Katz and Preferential Attachment [2]. 
 
 
 

2.2.6 Supervised Random Walks 
 
 

Node and link attributes along with node structure information are used for pre-

diction. Supervised learning strength is assigned to the edges that are likely to 

have new links in the future so that random walker can visit them more likely. 

The Strength is not set manually, but learned from the features of each edge 

and nodes between them.
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2.3 META APPROACHES 
 

 

Meta-Approaches alter the data before being passed to one of the algorithms 

mentioned above. 
 
 
 

2.3.1 Low-rank approximation 
 
 

For a lot of the mentioned algorithms there is a equivalent formulation for an 

adjacency matrix M. For a large Matrix M the Matrix Mk is the rank-k matrix, 

what can be done e ciently by singular value decomposition [9]. 
 
 

Katz measure using Mk rather than 4MCommonN eighborsscoringbyinnerproductsof 

rows rather than M 
 
 
 

 

The contains most related nodes to x under score(x; :) are de ned as Sx
< >. So 

after calculating the score(x; y), we need to calculate the Sx
< >. 

 
 
 

U B(x; y) := jz : z (y) \ Sx
< >j 

X 
U Bw(x; y) := score(x; z)  

z  (y)\Sx
< > 

 
 

2.3.2 Clustering 
 
 

This includes improving the quality of the algorithms by a clustering procedure 

and after that the algorithm is applied to the modi ed sub graph. To achieve that 

the measure is computing score(x; y) for all edge in the original graph and only 

keeping the p fraction of these edges, where the score is highest [10]. After that 

the score algorithm is applied to the modi ed graph. Using this technique, the 

measurement is only applied to those nodes, in which the scoring algorithm has 

the most con dence in. This can be seen as a cleaning up by removing of 

tenuous edges [11].
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2.4 Bayesian Probabilistic Model 
 

 

There are two types of probabilistic approaches to predict links. 

 

The rst approach extends a framework of probabilistic relational models cap-

turing probabilistic interactions between attributes of related entities by modelling 

interactions between the attributes and the link structure itself [12]. For a proba-

bility distribution over a database a template describing the relational schema for 

the domain and the probabilistic dependencies between attributes of the domain in 

form of a PRM(probabilistic relational model) is speci ed. Probability distribu-tion 

on the properties of the nodes and the links can be de ned. By including the links 

into the probabilistic model they can be used to predict other links and to help make 

predictions about other attributes in the model. If we look at existence uncertainty 

no assumptions are made about the number of links that exist they are part of the 

probabilistic model, but can still be used to make inferences about other attributes 

in the model [13]. 

 

The second approach is based on the topological features of network 

structures only. A probabilistic evolution model of network structure modelling 

probabilistic ips of existence of edges depending on a copy-and-paste 

mechanism of edges is presented. Based on this model a transductive learning 

algorithm for link pre-diction based on an assumption of the stationarity of the 

network is proposed. The algorithm realizes a maximum likelihood estimation 

procedure using expo-nentiated gradient ascent. This is based on the idea that 

if a node a has a strong in uence on a node b and there is an edge between a 

and another node c. The authors assume a high probability that a link will 

establish between b and c and that there is a very low probability that there will 

never be a node between them [14]. 

 
 
 

2.5 LINEAR ALGEBRAIC METHOD 
 

 

It is a general method to solve the link prediction problem which works directly on 

the graph adjacency matrix or Laplacian matrix. The problem is reduced to a one-

dimensional regression problem [9][15, 16]. They training set is reduced to its 

biggest connected component. The resulting set was then split into two adjacency 

matrices A and B, where A was the source matrix and B containing one third of
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all edges the target matrix. Di erent curve tting methods can be used to 

predict the edge sets in the test set [17].



 
 
 
 
 
 
 
 

 

Chapter 3 
 
 
 
 

Objective of the Project 
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The node neighbourhood algorithms of link prediction are based on node prox-

imity of a network. Common neighbours, Adamic/Adar index, Jaccard Coe cient, 

etc. give the friend suggestion by exploiting path length of 2 between the source 

and his potential friends. As it only considers of path lengths of 2, so it cant give e 

cient prediction because it only focuses on immediate neighbours of the node. But 

many other aspects are also needed to predict e ciently. Assuming a node can be 

connected to others by di erent paths and of di erent path lengths, so two nodes 

which are connected with many unique ways, are more likely to be connected and 

that varies with the path lengths of di erent ways in which they are connected. Our 

Proposed algorithm is more e cient than the algorithms which considers all the 

paths of the network. Because considerideration of all the paths require more time 

and space complexity. Sometimes it is necessary to get good result with in less 

interval of time. 

 
 

Our proposed algorithm performs better than global approaches as it is based 

on user input bounded path traversal. It predicts the links by traversing to a 

certain path length given by the user. In global approaches, the time and space 

complexity are high due to consideration of all paths in the network. As our 

algorithm only traverse up to certain path length, so its complexity is low with 

comparison to global approaches. It also outperforms the node neighbourhood 

algorithms as it traverses more path lengths than the node neighbourhood algo-

rithms. It considers the network characteristics around the target node to predict 

its future links. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1: Link PredictionProblem 
 
 

When we considers only path lengths of 2, then U4 and U7 have the equal 

probability of forming links with U1 as they are connected with two di erent way of 

path length 2. But when we consider the path length of 3, then U4 has more 
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probability to form a link than U7. Because U4 is connect with three di erent 



paths with U1. If we have followed node neighbourhood techniques, then we 

will get equal probability of U4 and U7 getting connected with U1. But through 

our algorithm with max traversal length of 3, we can conclude that U4 has more 

chance to get connected with U1 than U7. 
 
 

So our algorithm performs better than node neighborhood algorithms in terms 

of efficiency of result. It also performs better than global approaches in terms of 

time and space complexity. 
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The link prediction algorithms based on user input as maximum path to be 

traversed predicts the probability of formation of link between any two nodes of 

the network by traversing all the paths of the network up to that certain input 

path length. It rest traverses the path lengths of 2 i.e. the immediate 

neighborhoods of the node. we can say it runs a neighborhood algorithm on 

path length 2. It then produces a similarity list between every two nodes. When 

it traverses the graph for path length 3, it uses new paths that are made by path 

length 2 to get the new path lengths of 3 and computes their similarity matrix 

and updates the similarity matrix in a cumulative way. This process continues 

till the graph is traversed up to the maximum path length to be traversed given 

by user. Let we get a path from A to B while traversing for the path length of n 

1 with some similarity value, when we traverse the graph for path length value 

n, then we will check all the neighbors of B(i.e. C) to get path from A to C. We 

compute the similarity of each pair (A; C) and update the path list if their no 

direct link between A and C in the original graph. 
 

The inputs to the algorithm are the graph in terms of a list or adjacency array, 

the total number of nodes the graph, maximum length to be traversed, which 

determines how many time the algorithm will run and the path length for each 

speci c traversal. The output of the algorithm is a similarity list containing the 

similarity value between every two nodes by traversing the path lengths of given 

maximum user input value. By observing the similarity matrix we can predict the 

future links. The high similar values have more probability to form links in near 

future and we can classify the values based on certain threshold value. The 

similarity values more than the threshold value are likely to form future links. 

This prediction can be compared with the test data to get the e ciency of the 

algorithm. 

 
 
 

5.1 The Proposed Algorithm 
 

 

For each path length, we have to follow many steps: 
 

 

Calculate that path list with respect to the list with previous input path 

value 

 
Update the current adjacency list for the entries having non-zero path value
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Calculate the similarity measure with respect to the corresponding path 

list Update the similarity list by adding the new similarity measures to the 

list Increment the path length 

 

This iteration stops when current path length exceeds the maximum value of 

path length to be traversed. 
 
 
 

5.1.1 Algorithm Parameters 
 
 

5.1.1.1 Input Parameters 

 

A : adjacency matrix of undirected and unweighted graph 

 

n : total number of nodes of the graph 

 

l : max length of path to be explored in G 

 

m : the length of a path for current iteration 
 
 
 

5.1.1.2 Output Parameters 

 

sim(i; j) : Similarity measure between nodes i and j 
 
 
 

5.1.2 Algorithm  
 
 

Algorithm 1: MAIN FUNCTION   
for m 2 to n do   

cpath(A,n,prev,or) sim simi(sim,path,n,m); 

path 0 ; 
 

end  

 

The main Program iteratively calls for checking the new collaboration between 

any two nodes for a speci c path length through cpath function and computes the
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similarity between the new collaborations with exactly m path length and 

updates the similarity measures through sim function. 
 

 

for i 1 to N do  

 for j   1 to N do  
 

  

if i < j then 

  

   
 

   

if or (i,j) 6= j then 

 

   
 

    for k   1 to N do 
 

     

if prev (i,k) 6= 0 then 

 

     
 

       if A (i,k) 6= 0 and or (k,j) 6= 0 then 
 

         path (i,j)   path (i,j)+prev (i,k) * or (k,j) ; 
 

       end 
 

     end  
 

    end    
 

    path (j,i) path (i,j) ; 
 

   end    
 

  end    
 

 end    
 

end    
 

prev    path;    
 

for i   1 to N do    
 

 

for j   1 to N do 

  

  
 

  

if path (i,j) 6= 0 then 

 

  
 

   A (j,i) 1 ;  
 

  end    
 

 end    
 

end    
 

return path and A;    
 

          
 

 

The cpath function rst checks whether there is path from any two nodes of m 

path length. It checks it by merging the new paths generated while traversing the 

previous path length (m 1) and their neighbors in the original graph. So path
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matrix contains new collaborations of path length exactly m.  
 

Algorithm 2: FUNCTION SIMI   
for i 1 to n do  

 for j   1 to n do 
 

  

lower 1; 
 

  
 

  for k   1 to m do 
 

   

lower lower * (n-k) ; 

 

   
 

  end  
 

  sim (i,j) ( 1/(m-1)* sim (i,j) ) / lower; 
 

 end  
 

end  
 

return sim;  
 

     
 

 

The simi function nds the similarity measure for every pair of nodes which 

have path length exactly m. It then cumulates the similarity values till the path 

length of l for every two nodes. The pair of nodes having higher value of 

similarity are more likely to form link in the near future.



 
 
 
 
 
 
 
 

 

Chapter 6 
 
 
 
 

Implementation Details 
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A social network contains nodes and edges represent collaboration 

between nodes. Suppose we have a snapshot of a social network at a given 

time. We record multiple interactions between every pair of nodes in di erent 

time-stamps. We choose four times t0 < t00 < t1 < t01, and give our algorithm to 

predict links that are likely to be formed in the near future from the network G[t0; 

t00]. That results in predicting new links, not present in G[t0; t00], that are 

expected to appear in the network G[t1; t01]. We refer to[t0; t00] as the training 

interval and [t1; t01] as the test interval. 

 

As social networks grow very rapidly and exponentially, So there may be 

may nodes that may not be present in our snapshot of network on which we are 

pre-dicting. So we will consider only the nodes that are present in our network 

and their collaborations will be studied. Thus, in evaluating link prediction 

methods, we will generally use two parameters training set G[t0; t00] and test 

set G[t1; t01]. We will then evaluate how accurately the new edges between 

elements of training set can be predicted. 
 
 
 

6.1 Data Sources 
 

 

6.1.1 Condmat 
 
 

The rst data source is a stream of 19,464 multi-agent events representing con-

densed matter physics collaborations from 1995 to 2000. We construct weighted, 

undirected networks from the collaborations by creating a node for each author in 

the event and a weighted, undirected link connecting each pair of authors. Weights 

correspond to the number of collaborations two authors share. We use the years 

1995 to 1999 (13.9K nodes, 80.6K links) for extracting features as training set and 

the year 2000 (8.5K nodes,41.0K links) for obtaining ground truth. 

 

 

6.1.2 Disease-g 
 
 

The disease-gene(disease-g) network was constructed from three individual data sets. 

As the name suggests, this network has two distinct node types, diseases and genes, 

with four edge types connecting them. It also contains genetic associations, protein -

protein interactions, phenotypic links and family links as edges. Here we
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have taken a small part of it. The nodes are the diseases and the weights 

represent the genetic similarity between cancer diseases. 
 
 

 

6.2 Network Characteristics 

 

 Condmat Disease-g 
   

Nodes 17636 1835 
   

Edges 23709 7817 
   

Assortativity Coe  cient 0.177 0.31 
   

Avg. Clustering Coe  cient 0.642 0.665 
   

Number of SSCs 652 1 
   

Largest SSC 15,081 399 
   

Largest SSC diameter 19 4 
   



6.3 Codes 
 
 
import numpy as np 

import os 

import glob 

import random 

from random import shuffle 

from random import seed 

import matplotlib.pyplot as plt 

import time 

import datetime 

import collections 

import csv 

 

k = 3   # Top k recomendations for a target user 

maxl = 2  # Number of iterations for Katz Algorithm 

beta = 0.1  # The damping factor for Katz Algorithm 

 

 

################################ 

######## Helper Functions ######### 

################################ 

 

# load edge-list from file 

def get_edge_list(dataset_path): 

 data_file = open(dataset_path) 

 edge_list = map(lambda x:tuple(map(int,x.split())),data_file.read().split("\n")[:-1]) 

 data_file.close() 

 return edge_list 

 
 
 

# Get the similarity product for a path 

# (product of path-step similarities) 

def get_sim_product(sim, shortest_path): 

 prod = 1 

 for i in range(len(shortest_path) - 1): 

  prod *= sim[shortest_path[i]][shortest_path[i+2]] 

 return round(prod,3) 

 

 

 

 

 

 

# Filter out, Sort and Get top-K predictions 

def get_top_k_recommendations(graph,sim,i,k): 

 return  sorted(filter(lambda x: i!=x and graph[i,x] != 1,range(len(sim[i]))) , 

key=lambda x: sim[i][x],reverse=True)[0:k] 

 

 

 

 



 

# Convert edge_list into a set of constituent edges 

def get_vertices_set(edge_list): 

 res = set() 

 for x,y in edge_list: 

  res.add(x) 

  res.add(y) 

 return res 

 

 

 

 

 

# Split the dataset into two parts (50-50 split) 

# Create 2 graphs, 1 used for training and the other for testing 

def split_data(edge_list): 

 random.seed(350) 

 indexes = range(len(edge_list)) 

 test_indexes = set(random.sample(indexes, len(indexes)/2)) # removing 50% edges 

from test data 

 train_indexes = set(indexes).difference(test_indexes) 

 test_list = [edge_list[i] for i in test_indexes] 

 train_list = [edge_list[i] for i in train_indexes] 

 csv_file = open('test.csv',"w") 

 fields = ['Node1','Node2'] 

 thewriter = csv.DictWriter(csv_file,fieldnames=fields) 

 for i in range(len(test_list)): 

  thewriter.writerow({'Node1' : str(edge_list[i][0]) , 'Node2' : 

str(edge_list[i][1])}) 

 return train_list,test_list 

 
 
  
  
 

# Calculates accuracy metrics (Precision & Recall), 

# for a given similarity-model against a test-graph. 

def 

print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices_set,es

im): 

 precision = recall = c = 0 

 for i in test_vertices_set: 

  if i in train_vertices_set: 

   actual_friends_of_i = set(test_graph.neighbors(i)) 

 

   # Handles case where test-data < k 

   if len(actual_friends_of_i) < k: 

    k2 = len(actual_friends_of_i) 

   else: 

    k2 = k 

 

   top_k = set(get_top_k_recommendations(train_graph,esim,i,k2)) 

    

   precision += len(top_k.intersection(actual_friends_of_i))/float(k2) 



   recall += 

len(top_k.intersection(actual_friends_of_i))/float(len(actual_friends_of_i)) 

   c += 1 

 #print(esim) 

 print "Precision is : " + str(precision/c) 

 print "Recall is : " + str(recall/c) 

 

 

 

 

def get_recomemendations(edge_list,esim,name): 

 graph = Graph(edge_list) 

 edge_vertices_set = get_vertices_set(edge_list) 

 

 #output to a file name output.txt 

 if name == "train": 

  csv_file = open('train_recommendations.csv',"w") 

  fields = ['Node','R1','R2','R3'] 

  thewriter = csv.DictWriter(csv_file,fieldnames=fields) 

  csv_file2 = open('train_edgelist.csv',"w") 

  fields2 = ['Node1','Node2','Weight'] 

  thewriter2 = csv.DictWriter(csv_file2,fieldnames=fields2) 

 if name == "total": 

  csv_file = open('total_recommendations.csv',"w") 

  fields = ['Node','R1','R2','R3'] 

  thewriter = csv.DictWriter(csv_file,fieldnames=fields) 

  csv_file2 = open('total_edgelist.csv',"w") 

  fields2 = ['Node1','Node2','Weight'] 

  thewriter2 = csv.DictWriter(csv_file2,fieldnames=fields2) 

 

 

 for i in edge_vertices_set: 

  if i in edge_vertices_set: 

   actual_friends_of_i = set(graph.neighbors(i)) 

 

   # Handles case where test-data < k 

   if len(actual_friends_of_i) < k: 

    k2 = len(actual_friends_of_i) 

   else: 

    k2 = k 

 

   top_k = get_top_k_recommendations(graph,esim,i,k2) 

   if len(top_k) == 3: 

    thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0] , 'R2' : 

top_k[1] ,'R3' : top_k[2]}) #write to csv file 

   elif len(top_k) == 2: 

    thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0] , 'R2' : 

top_k[1]}) #write to csv file 

   elif len(top_k) == 1: 

    thewriter.writerow({'Node' : str(i) , 'R1' : top_k[0]}) #write to 

csv file 

 i=0 

 for i in range(len(edge_list)): 



  thewriter2.writerow({'Node1' : str(edge_list[i][0]) , 'Node2' : 

str(edge_list[i][1]) ,'Weight' : str(esim[edge_list[i][0]][edge_list[i][1]])}) 

 

 

 

# http://be.amazd.com/link-prediction/ 

def similarity(graph, i, j, method): 

 if method == "common_neighbors": 

  return len(set(graph.neighbors(i)).intersection(set(graph.neighbors(j)))) 

 elif method == "jaccard": 

  return 

len(set(graph.neighbors(i)).intersection(set(graph.neighbors(j))))/float(len(set(graph.neighbo

rs(i)).union(set(graph.neighbors(j))))) 

 elif method == "adamic_adar": 

  return sum([1.0/math.log(graph.degree(v)) for v in 

set(graph.neighbors(i)).intersection(set(graph.neighbors(j)))]) 

 elif method == "preferential_attachment": 

  return graph.degree(i) * graph.degree(j) 

 elif method == "friendtns": 

  return round((1.0/(graph.degree(i) + graph.degree(j) - 1.0)),3) 

 

 

################################### 

### Methods for Link Prediction ### 

################################### 

 

def local_methods(edge_list,method): 

  

 graph = Graph(edge_list) 

 edge_n = graph.vcount() 

 edge_vertices_set = get_vertices_set(edge_list) 

 

 

 

 train_list, test_list = split_data(edge_list) 

 train_graph = Graph(train_list) 

 test_graph = Graph(test_list) 

 train_n =  train_graph.vcount() # This is maximum of the vertex id + 1 

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only 

consider target users who are present in this train_vertices_set 

 test_vertices_set = get_vertices_set(test_list) # Set of target users 

 

 sim = [[0 for i in range(train_n)] for j in range(train_n)] 

 for i in range(train_n): 

  for j in range(train_n): 

   if i!=j and i in train_vertices_set and j in train_vertices_set: 

    sim[i][j] = similarity(train_graph,i,j,method) 

 

 

 sp1 = {} 

 for i in train_vertices_set: 

  sp1[i] = train_graph.get_shortest_paths(i) 

 



 # Extended Sim matrix for train_list 

 esim1 = [[0 for i in range(train_n)] for j in range(train_n)] 

 for i in range(train_n): 

  for j in range(train_n): 

   if i!=j and i in train_vertices_set and j in train_vertices_set: 

    if len(sp1[i][j]) == 0: # no path exists 

     esim1[i][j] = 0 

    elif train_graph[i,j] == 1 and train_graph[j,i] == 1: # are 

neighbors 

     esim1[i][j] = sim[i][j] 

    else: 

     esim1[i][j] = get_sim_product(sim,sp1[i][j]) 

   elif i == j and i in train_vertices_set and j in train_vertices_set: 

    esim1[i][j] = 1 

 get_recomemendations(train_list,esim1,'train') 

 

 

 

 sim1 = [[0 for i in range(edge_n)] for j in range(edge_n)] 

 for i in range(edge_n): 

  for j in range(edge_n): 

   if i!=j and i in edge_vertices_set and j in edge_vertices_set: 

    sim1[i][j] = similarity(graph,i,j,method) 

   elif i == j and i in edge_vertices_set and j in edge_vertices_set: 

    sim1[i][j] = 1 

 

 

 sp = {} 

 for i in edge_vertices_set: 

  sp[i] = graph.get_shortest_paths(i) 

 

 # Extended Sim matrix for total_graph 

 esim = [[0 for i in range(edge_n)] for j in range(edge_n)] 

 for i in range(edge_n): 

  for j in range(edge_n): 

   if i!=j and i in edge_vertices_set and j in edge_vertices_set: 

    if len(sp[i][j]) == 0: # no path exists 

     esim[i][j] = 0 

    elif graph[i,j] == 1 and graph[j,i] == 1: # are neighbors 

     esim[i][j] = sim1[i][j] 

    else: 

     esim[i][j] = get_sim_product(sim1,sp[i][j]) 

   elif i == j and i in edge_vertices_set and j in edge_vertices_set: 

    esim[i][j] = 1 

 get_recomemendations(edge_list,esim,'total') 

 

 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,esim1) 

 

 

 

 

 



 

 

 

# Calculates the Katz Similarity measure for a node pair (i,j) 

def katz_similarity(katzDict,i,j): 

 l = 1 

 neighbors = katzDict[i] 

 score = 0 

 

 while l <= maxl: 

  numberOfPaths = neighbors.count(j) 

  if numberOfPaths > 0: 

   score += (beta**l)*numberOfPaths 

 

  neighborsForNextLoop = [] 

  for k in neighbors: 

   neighborsForNextLoop += katzDict[k] 

  neighbors = neighborsForNextLoop 

  l += 1 

 

 return score 

 

 

 

 

 

 

# Implementation of the Katz algorithm 

def katz(edge_list,method): 

 train_list, test_list = split_data(edge_list) 

 train_graph = Graph(train_list) 

 test_graph = Graph(test_list) 

 train_n = train_graph.vcount() 

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only 

consider target users who are present in this train_vertices_set 

 test_vertices_set = get_vertices_set(test_list) # Set of target users 

 

 # build a special dict that is like an adjacency list 

 katzDict = {} 

 adjList = train_graph.get_adjlist() 

 

 for i, l in enumerate(adjList): 

  katzDict[i] = l 

 

 sim = [[0 for i in xrange(train_n)] for j in xrange(train_n)] 

 for i in xrange(train_n): 

  if i not in train_vertices_set: 

   continue 

 

  for j in xrange(i+1, train_n): 

   if j in train_vertices_set:  # TODO: check if we need this 

    sim[i][j] = sim[j][i] = katz_similarity(katzDict,i,j) 

 



 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,sim) 

 

 

 

 

 

 

 

# Implementation of the friendTNS algorithm 

def friendtns(edge_list, method): 

 

 graph = Graph(edge_list) 

 edge_n = graph.vcount() 

 edge_vertices_set = get_vertices_set(edge_list) 

 

 train_list, test_list = split_data(edge_list) 

 train_graph = Graph(train_list) 

 test_graph = Graph(test_list) 

 train_n =  train_graph.vcount() # This is maximum of the vertex id + 1 

 train_vertices_set = get_vertices_set(train_list) # Need this because we have to only 

consider target users who are present in this train_vertices_set 

 test_vertices_set = get_vertices_set(test_list) # Set of target users 

 

 sim = [[0 for i in range(train_n)] for j in range(train_n)] 

 for i in range(train_n): 

  for j in range(train_n): 

   if i!=j and i in train_vertices_set and j in train_vertices_set and 

train_graph[i,j] != 0: 

    sim[i][j] = similarity(train_graph,i,j,method) 

 

 

 # Calculate Shortest Paths from each vertex to every other vertex in the 

train_vertices_set 

 sp = {} 

 for i in train_vertices_set: 

  sp[i] = train_graph.get_shortest_paths(i) 

 

 # Extended Sim matrix 

 esim = [[0 for i in range(train_n)] for j in range(train_n)] 

 for i in range(train_n): 

  for j in range(train_n): 

   if i!=j and i in train_vertices_set and j in train_vertices_set: 

    if len(sp[i][j]) == 0: # no path exists 

     esim[i][j] = 0 

    elif train_graph[i,j] == 1 and train_graph[j,i] == 1: # are 

neighbors 

     esim[i][j] = sim[i][j] 

    else: 

     esim[i][j] = get_sim_product(sim,sp[i][j]) 

 get_recomemendations(train_list,esim,'train') 

 

 



 

 sim1 = [[0 for i in range(edge_n)] for j in range(edge_n)] 

 for i in range(edge_n): 

  for j in range(edge_n): 

   if i!=j and i in edge_vertices_set and j in edge_vertices_set: 

    sim1[i][j] = similarity(graph,i,j,method) 

   elif i == j and i in edge_vertices_set and j in edge_vertices_set: 

    sim1[i][j] = 1 

 

 sp1 = {} 

 for i in edge_vertices_set: 

  sp1[i] = graph.get_shortest_paths(i) 

 

 # Extended Sim matrix 

 esim1 = [[0 for i in range(edge_n)] for j in range(edge_n)] 

 for i in range(edge_n): 

  for j in range(edge_n): 

   if i!=j and i in edge_vertices_set and j in edge_vertices_set: 

    if len(sp1[i][j]) == 0: # no path exists 

     esim1[i][j] = 0 

    elif graph[i,j] == 1 and graph[j,i] == 1: # are neighbors 

     esim1[i][j] = sim1[i][j] 

    else: 

     esim1[i][j] = get_sim_product(sim1,sp1[i][j]) 

   elif i == j and i in edge_vertices_set and j in edge_vertices_set: 

    esim1[i][j] = 1 

 get_recomemendations(edge_list,esim1,'total') 

 print_precision_and_recall(sim,train_graph,test_graph,test_vertices_set,train_vertices

_set,esim) 

 

 

 

 

 

 

 

 

################################### 

############# Main ################ 

################################### 

 

def main(): 

 # default-case/ help 

 if len(sys.argv) < 3 : 

  print "python link_prediction.py 

<common_neighbors/jaccard/adamic_adar/preferential_attachment/katz/friendtns> 

data_file_path" 

  exit(1) 

 

 # Command line argument parsing 

 method = sys.argv[1].strip() 

 dataset_path = sys.argv[2].strip() 

 edge_list = get_edge_list(dataset_path) 



 

 if method == "common_neighbors" or method == "jaccard" or method == 

"adamic_adar" or method == "preferential_attachment": 

  local_methods(edge_list,method) 

 elif method == "katz": 

  katz(edge_list,method) 

 elif method == "friendtns": 

  friendtns(edge_list,method) 

 else: 

  print "python link_prediction.py 

<common_neighbors/jaccard/adamic_adar/preferential_attachment/katz/friendtns> 

data_file_path" 

 

if __name__ == "__main__": 

 main() 
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7.1 The Evaluation Measures 
 

 

Let us de ne P as positive result and N as negative result. The possible 

outcomes can be formulated in a matrix. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.1: Confusion matrx 
 
 
 
 

7.1.1 Receiver Operating Characteristic(ROC) 
 
 

ROC is the variation of true positive rate(TPR) with respect to false positive rate 

(FPR) at various threshold settings. So it is de ned by FPR and TPR as x and 

y-axis respectively. 
 

TPR = fraction of true positives out of total positives i.e. T P=P = T P=(T P +F N) 
 

FPR = fraction of false positives out of total negatives i.e. F P=N = F P=(F P + 
 

T N) 
 
 
 

7.1.2 Precision-Recall Curve 
 
 

ROC is the variation of Precision with respect to Recall at various threshold 

settings. So, it is designed by Recall and Precision as x and y-axis 

respectively. Precision = Positive predictive value i.e. T P=(T P + F P ) 
 

Recall = fraction of true positives out of total positives i.e. T P=P = T P=(T P + 

F N)
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7.2 Comparison between various link Prediction 
 

algorithms 
 

 

There are mainly two types of link prediction algorithms-node neighborhood tech- 
 

niques and global approaches. We have applied different algorithms to Condmat 
 

data set. 
 
 
 

7.2.1 ROC curve for Condmat data set  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2: ROC curve of condmat data 

 
 

Here we nd that Adamic/Adar outperforms the other algorithms. 
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7.2.2 Precision Recall Curve for Condmat data set  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: PR curve of condmat data 
 
 
 
 
 

Here also we observe that Adamic/Adar outperforms the other algorithms.
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7.2.3 ROC curve for Disease-g data set  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.4: ROC curve of Disease-g data 
 
 
 
 
 

Here we nd that the result remains the same. Adamic/Adar performs well 

with comparison to the other algorithms.



33  

 

7.2.4 Precision Recall Curve for Disease-g data set  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.5: PR curve of Disease-g data 
 
 
 
 
 

Adamic/Adar is the best and most stable graph proximity measurement of 

the unweighted node neighbourhood based algorithms in almost all 

categorieswhen it doesnt score highest, the di erence is not much.
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7.3 Our Proposed Method Implementation 
 

 

We are implementing our proposed method on a small network. The input to 

the algorithms is the network below and the output is a similarity matrix. It has 

been discussed that with path length of 3, U4 has more probability to form link 

with U1 with comparison to U7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.6: Link Prediction Analysis 
 
 
 

The algorithm is implemented using maximum length to be traversed as 4. This 

result shows that the similarity value of the node pair U1 and U4 is maximum  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7: Similarity matrx 

 

and more than that of the pair U1 and U7. So, there is more probability of formation of 

link between U1 and U4. Hence our proposed method works correctly. 
 
 

 

7.4 Complexity Analysis 
 

 

Global approaches traverses all paths of the network to predict the links. They 

require matrix inversion. So the time complexity for global techniques is O(n3). 
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The node neighborhood approaches traverses path length of 2 in a network. That 

means, for any node it rst traverses all its neighbors and then their neighbors and 

computes the similarity of the source node with its neighbors neighbor. Let h be the 

average node degree of the network. As h << n, so the time complexity is (n*h
2
). 

As our method is based on bounded length traversal, it traverses up to a path length 

of l. So the time complexity is O(n*h
l
) and the space complexity is O(n*h).So Our 

method is better than global approaches in terms of complexity. 

 

 Condmat Disease-g 
   

Page Rank 370 sec 530 sec 
   

katz 430 sec 620 sec 
   

Node neighbor 72 sec 230 sec 
   

Proposed 260 sec 350 sec 
   

 
 

This result shows that our algorithm takes less time as compared to the global 

approaches. Node neighbor approach is taking less time as it focuses on only 

immediate surroundings of the node and traverse only paths of length 2. 
 

The below gure shows the bar plot of the time taken by di erent algorithms and 

the proposed algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8: Bar Plot of Time takes by algorithms
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8.1 Conclusions 
 
 
 
 

Link Prediction is the method to predict the possible future interactions among 

the nodes in the near future. Our algorithm uses both global and local 

characteristics of the network to predict the links. Global approaches has the 

time constraint as they traverse all paths of network to predict the links and local 

approaches are less e cient as they consider only local features of the node. 

Our approach is compared with all the approaches and it provides e cient and 

accurate friend suggestions in a less interval of time 

 
 
 

8.2 Future Research Opportunities 
 
 
 
 

Link Prediction based on other features like photo, video tagging can be used 

for better prediction. As many features as we consider simultaneously, the 

prediction will be better because it gives information about many ways peoples 

may by connected. We can consider the positive as well as negative links in a 

network. If positive weight is for support, then negative weight should be for 

opposing it. As network is always dynamic, so we can consider network 

dynamics into consideration.



 


