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Introduction:

The explosive growth in the amount of available digital information and the number of visitors to
the Internet have created a potential challenge of information overload which hinders timely
access to items of interest on the Internet. Information retrieval systems, such as Google,
DevilFinder and Altavista have partially solved this problem but prioritization and
personalization (where a system maps available content to user’s interests and preferences) of
information were absent. This has increased the demand for recommender systems more than
ever before. Recommender systems are information filtering systems that deal with the problem
of information overload by filtering vital information fragment out of large amount of
dynamically generated information according to user’s preferences, interest, or observed
behavior about item . Recommender system has the ability to predict whether a particular user
would prefer an item or not based on the user’s profile.

Recommender systems are beneficial to both service providers and users . They reduce
transaction costs of finding and selecting items in an online shopping environment .
Recommendation systems have also proved to improve decision making process and quality . In
e-commerce setting, recommender systems enhance revenues, for the fact that they are effective
means of selling more products. In scientific libraries, recommender systems support users by
allowing them to move beyond catalog searches. Therefore, the need to use efficient and accurate
recommendation techniques within a system that will provide relevant and dependable
recommendations for users cannot be over-emphasized.
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Literature Review:

Recommender system is defined as a decision making strategy for users under complex
information environments . Also, recommender system was defined from the perspective of E-
commerce as a tool that helps users search through records of knowledge which is related to
users’ interest and preference . Recommender system was defined as a means of assisting and
augmenting the social process of using recommendations of others to make choices when there is
no sufficient personal knowledge or experience of the alternatives . Recommender systems
handle the problem of information overload that users normally encounter by providing them
with personalized, exclusive content and service recommendations. Recently, various approaches
for building recommendation systems have been developed, which can utilize either
collaborative filtering, content-based filtering or hybrid filtering . Collaborative filtering
technique is the most mature and the most commonly implemented. Collaborative filtering
recommends items by identifying other users with similar taste; it uses their opinion to
recommend items to the active user. Collaborative recommender systems have been
implemented in different application areas. GroupLens is a news-based architecture which
employed collaborative methods in assisting users to locate articles from massive news database
. Ringo is an online social information filtering system that uses collaborative filtering to build
users profile based on their ratings on music aloums . Amazon uses topic diversification
algorithms to improve its recommendation . The system uses collaborative filtering method to
overcome scalability issue by generating a table of similar items offline through the use of item-
to-item matrix. The system then recommends other products which are similar online according
to the users’ purchase history. On the other hand, content-based techniques match content
resources to user characteristics. Content-based filtering techniques normally base their
predictions on user’s information, and they ignore contributions from other users as with the case
of collaborative techniques . Fab relies heavily on the ratings of different users in order to create
a training set and it is an example of content-based recommender system. Some other systems
that use content-based filtering to help users find information on the Internet include Letizia .
The system makes use of a user interface that assists users in browsing the Internet; it is able to
track the browsing pattern of a user to predict the pages that they may be interested in. Pazzani et
al. designed an intelligent agent that attempts to predict which web pages will interest a user by
using naive Bayesian classifier. The agent allows a user to provide training instances by rating
different pages as either hot or cold. Jennings and Higuchi describe a neural network that models
the interests of a user in a Usenet news environment.
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Despite the success of these two filtering techniques, several limitations have been identified.
Some of the problems associated with content-based filtering techniques are limited content
analysis, overspecialization and sparsity of data . Also, collaborative approaches exhibit cold-
start, sparsity and scalability problems. These problems usually reduce the quality of
recommendations. In order to mitigate some of the problems identified, Hybrid filtering, which
combines two or more filtering techniques in different ways in order to increase the accuracy and
performance of recommender systems has been proposed . These techniques combine two or
more filtering approaches in order to harness their strengths while leveling out their
corresponding weaknesses . They can be classified based on their operations into weighted
hybrid, mixed hybrid, switching hybrid, feature-combination hybrid, cascade hybrid, feature-
augmented hybrid and meta-level hybrid . Collaborative filtering and content-based filtering
approaches are widely used today by implementing content-based and collaborative techniques
differently and the results of their prediction later combined or adding the characteristics of
content-based to collaborative filtering and vice versa. Finally, a general unified model which
incorporates both content-based and collaborative filtering properties could be developed . The
problem of sparsity of data and cold-start was addressed by combining the ratings, features and
demographic information about items in a cascade hybrid recommendation technique in . In
Ziegler et al. , a hybrid collaborative filtering approach was proposed to exploit bulk taxonomic
information designed for exacting product classification to address the data sparsity problem of
CF recommendations, based on the generation of profiles via inference of super-topic score and
topic diversification. A hybrid recommendation technique is also proposed in Ghazantar and
Pragel-Benett , and this uses the content-based profile of individual user to find similar users
which are used to make predictions. In Sarwar et al. , collaborative filtering was combined with
an information filtering agent. Here, the authors proposed a framework for integrating the
content-based filtering agents and collaborative filtering. A hybrid recommender algorithm is
employed by many applications as a result of new user problem of content-based filtering
techniques and average user problem of collaborative filtering . A simple and straightforward
method for combining content-based and collaborative filtering was proposed by Cunningham et
al. . A music recommendation system which combined tagging information, play counts and
social relations was proposed in Konstas et al. . In order to determine the number of neighbors
that can be automatically connected on a social platform, Lee and Brusilovsky embedded social
information into collaborative filtering algorithm. A Bayesian mixed-effects model that
integrates user ratings, user and item features in a single unified framework was proposed by
Condiff et al..
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Objective:

On the Internet, where the number of choices is overwhelming, there is need to filter, prioritize
and efficiently deliver relevant information in order to alleviate the problem of information
overload, which has created a potential problem to many Internet users. Recommender systems
solve this problem by searching through large volume of dynamically generated information to
provide users with personalized content and services. This paper explores the different
characteristics and potentials of different prediction techniques in recommendation systems in
order to serve as a compass for research and practice in the field of recommendation systems.
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System Design:

Phases of recommendation process

1. Information collection phase:

This collects relevant information of users to generate a user profile or model for the prediction
tasks including user’s attribute, behaviors or content of the resources the user accesses. A
recommendation agent cannot function accurately until the user profile/model has been well
constructed. The system needs to know as much as possible from the user in order to provide
reasonable recommendation right from the onset. Recommender systems rely on different types
of input such as the most convenient high quality explicit feedback, which includes explicit input
by users regarding their interest in item or implicit feedback by inferring user preferences
indirectly through observing user behavior . Hybrid feedback can also be obtained through the
combination of both explicit and implicit feedback. In E-learning platform, a user profile is a
collection of personal information associated with a specific user. This information includes
cognitive skills, intellectual abilities, learning styles, interest, preferences and interaction with
the system. The user profile is normally used to retrieve the needed information to build up a
model of the user. Thus, a user profile describes a simple user model. The success of any
recommendation system depends largely on its ability to represent user’s current interests.
Accurate models are indispensable for obtaining relevant and accurate recommendations from
any prediction techniques.

2. Explicit feedback:

The system normally prompts the user through the system interface to provide ratings for items
in order to construct and improve his model. The accuracy of recommendation depends on the
quantity of ratings provided by the user. The only shortcoming of this method is, it requires
effort from the users and also, users are not always ready to supply enough information. Despite
the fact that explicit feedback requires more effort from user, it is still seen as providing more
reliable data, since it does not involve extracting preferences from actions, and it also provides
transparency into the recommendation process that results in a slightly higher perceived
recommendation quality and more confidence in the recommendations .



RECOMMENDATION SYSTEM USING DEEP LEARNING

3. Implicit feedback:

The system automatically infers the user’s preferences by monitoring the different actions of
users such as the history of purchases, navigation history, and time spent on some web pages,
links followed by the user, content of e-mail and button clicks among others. Implicit feedback
reduces the burden on users by inferring their user’s preferences from their behavior with the
system. The method though does not require effort from the user, but it is less accurate. Also, it
has also been argued that implicit preference data might in actuality be more objective, as there
IS no bias arising from users responding in a socially desirable way and there are no self-image
issues or any need for maintaining an image for others .

4. Hybrid feedback:

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order
to minimize their weaknesses and get a best performing system. This can be achieved by using
an implicit data as a check on explicit rating or allowing user to give explicit feedback only when
he chooses to express explicit interest.

5. Learning phase:

It applies a learning algorithm to filter and exploit the user’s features from the feedback gathered
in information collection phase.

6. Prediction/recommendation phase:

It recommends or predicts what kind of items the user may prefer. This can be made either
directly based on the dataset collected in information collection phase which could be memory
based or model based or through the system’s observed activities of the user.

10
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Recommendation filtering technigques:

The use of efficient and accurate recommendation techniques is very important for a system that
will provide good and useful recommendation to its individual users. This explains the
importance of understanding the features and potentials of different recommendation techniques.
Below figure shows the anatomy of different recommendation filtering techniques.

Recommender
System

Content-based filtering Collaborative filtering Hybrid filtering
technique technique technique

|
l |

Model-based filtering Memory-based filtering
technique technique

Clustering, techniques
Association technigues,

Bayesian networks,
Neural Networks User-based @

Fig:2
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1. Content-based filtering:

Content-based technique is a domain-dependent algorithm and it emphasizes more on the
analysis of the attributes of items in order to generate predictions. When documents such as web
pages, publications and news are to be recommended, content-based filtering technique is the
most successful. In content-based filtering technique, recommendation is made based on the user
profiles using features extracted from the content of the items the user has evaluated in the past .
Items that are mostly related to the positively rated items are recommended to the user. CBF uses
different types of models to find similarity between documents in order to generate meaningful
recommendations. It could use Vector Space Model such as Term Frequency Inverse Document
Frequency (TF/IDF) or Probabilistic models such as Naive Bayes Classifier , Decision Trees or
Neural Networks to model the relationship between different documents within a corpus. These
techniques make recommendations by learning the underlying model with either statistical
analysis or machine learning techniques. Content-based filtering technique does not need the
profile of other users since they do not influence recommendation. Also, if the user profile
changes, CBF technique still has the potential to adjust its recommendations within a very short
period of time. The major disadvantage of this technique is the need to have an in-depth
knowledge and description of the features of the items in the profile.

Pros and Cons of content-based filtering technigues:

CB filtering techniques overcome the challenges of CF. They have the ability to recommend new
items even if there are no ratings provided by users. So even if the database does not contain user
preferences, recommendation accuracy is not affected. Also, if the user preferences change, it
has the capacity to adjust its recommendations in a short span of time. They can manage
situations where different users do not share the same items, but only identical items according to
their intrinsic features. Users can get recommendations without sharing their profile, and this
ensures privacy . CBF technique can also provide explanations on how recommendations are
generated to users. However, the techniques suffer from various problems as discussed in the
literature . Content based filtering techniques are dependent on items’ metadata. That is, they
require rich description of items and very well organized user profile before recommendation can
be made to users. This is called limited content analysis. So, the effectiveness of CBF depends
on the availability of descriptive data. Content overspecialization is another serious problem of
CBF technique. Users are restricted to getting recommendations similar to items already defined
in their profiles.

12
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Examples of content-based filtering systems:

News Dude is a personal news system that utilizes synthesized speech to read news stories to
users. TF-IDF model is used to describe news stories in order to determine the short-term
recommendations which is then compared with the Cosine Similarity Measure and finally
supplied to a learning algorithm (NN). CiteSeer is an automatic citation indexing that uses
various heuristics and machine learning algorithms to process documents. Today, CiteSeer is
among the largest and widely used research paper repository on the web.

LIBRA is a content-based book recommendation system that uses information about book
gathered from the Web. It implements a Naive Bayes classifier on the information extracted from
the web to learn a user profile to produce a ranked list of titles based on training examples
supplied by an individual user. The system is able to provide explanation on any
recommendations made to users by listing the features that contribute to the highest ratings and
hence allowing the users to have total confidence on the recommendations provided to users by
the system.

2. Collaborative filtering:

Collaborative filtering is a domain-independent prediction technique for content that cannot
easily and adequately be described by metadata such as movies and music. Collaborative
filtering technique works by building a database (user-item matrix) of preferences for items by
users. It then matches users with relevant interest and preferences by calculating similarities
between their profiles to make recommendations . Such users build a group called neighborhood.
An user gets recommendations to those items that he has not rated before but that were already
positively rated by users in his neighborhood. Recommendations that are produced by CF can be
of either prediction or recommendation. Prediction is a numerical value, Rij, expressing the
predicted score of item j for the user i, while Recommendation is a list of top N items that the
user will like the most as shown in below figure. The technique of collaborative filtering can be
divided into two categories: memory-based and model-based .

13
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2.1. Memory based techniques:

The items that were already rated by the user before play a relevant role in searching for a
neighbor that shares appreciation with him. Once a neighbor of a user is found, different
algorithms can be used to combine the preferences of neighbors to generate recommendations.
Due to the effectiveness of these techniques, they have achieved widespread success in real life
applications. Memory-based CF can be achieved in two ways through user-based and item-based
techniques. User based collaborative filtering technique calculates similarity between users by
comparing their ratings on the same item, and it then computes the predicted rating for an item
by the active user as a weighted average of the ratings of the item by users similar to the active
user where weights are the similarities of these users with the target item. Item-based filtering
techniques compute predictions using the similarity between items and not the similarity between
users. It builds a model of item similarities by retrieving all items rated by an active user from
the user-item matrix, it determines how similar the retrieved items are to the target item, then it
selects the k most similar items and their corresponding similarities are also determined.
Prediction is made by taking a weighted average of the active users rating on the similar items k.
Several types of similarity measures are used to compute similarity between item/user. The two
most popular similarity measures are correlation-based and cosine-based. Pearson correlation
coefficient is used to measure the extent to which two variables linearly relate with each other
and is defined as

14
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From the above equation,

S(a,u)is the mean rating given by user a while n is the total number of items in the user-item
space. Also, prediction for an item is made from the weighted combination of the selected
neighbors’ ratings, which is computed as the weighted deviation from the neighbors’ mean. The
general prediction formula is

p(a 1) =7 4+ Erl L[r:,_,—?;}x.s[a,u}

30 slau)

Cosine similarity is different from Pearson-based measure in that it is a vector-space model
which is based on linear algebra rather that statistical approach. It measures the similarity
between two n-dimensional vectors based on the angle between them. Cosine-based measure is
widely used in the fields of information retrieval and texts mining to compare two text
documents, in this case, documents are represented as vectors of terms. The similarity between
two items u and v can be defined as

o ':-
> > u‘. LI- F:r' ToiTu
s(u,v)=—""5 = ===
| u |+ v [30irh % x'Z r

'IL_- Fur) vi

Similarity measure is also referred to as similarity metric, and they are methods used to calculate
the scores that express how similar users or items are to each other. These scores can then be
used as the foundation of user- or item-based recommendation generation. Depending on the
context of use, similarity metrics can also be referred to as correlation metrics or distance
metrics.

15
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2.2. Model-based techniques:

This technique employs the previous ratings to learn a model in order to improve the
performance of Collaborative filtering Technique. The model building process can be done using
machine learning or data mining techniques. These techniques can quickly recommend a set of
items for the fact that they use pre-computed model and they have proved to produce
recommendation results that are similar to neighborhood-based recommender techniques.
Examples of these techniques include Dimensionality Reduction technique such as Singular
Value Decomposition (SVD), Matrix Completion Technique, Latent Semantic methods, and
Regression and Clustering. Model-based techniques analyze the user-item matrix to identify
relations between items; they use these relations to compare the list of top-N recommendations.
Model based techniques resolve the sparsity problems associated with recommendation systems.

The use of learning algorithms has also changed the manner of recommendations from
recommending what to consume by users to recommending when to actually consume a product.
It is therefore very important to examine other learning algorithms used in model-based
recommender systems:

Association rule: Association rules mining algorithms extract rules that predict the occurrence
of an item based on the presence of other items in a transaction. For instance, given a set of
transactions, where each transaction is a set of items, an association rule applies the form A — B,
where A and B are two sets of items . Association rules can form a very compact representation
of preference data that may improve efficiency of storage as well as performance. Also, the
effectiveness of association rule for uncovering patterns and driving personalized marketing
decisions has been known for sometimes . However, there is a clear relation between this method
and the goal of a Recommendation System but they have not become mainstream.

Clustering: Clustering techniques have been applied in different domains such as, pattern
recognition, image processing, statistical data analysis and knowledge discovery. Clustering
algorithm tries to partition a set of data into a set of sub-clusters in order to discover meaningful
groups that exist within them. Once clusters have been formed, the opinions of other users in a
cluster can be averaged and used to make recommendations for individual users. A good
clustering method will produce high quality clusters in which the intra-cluster similarity is high,
while the inter-cluster similarity is low. In some clustering approaches, a user can have partial
participation in different clusters, and recommendations are then based on the average across the
clusters of participation which is weighted by degree of participation. K-means and Self-
Organizing Map (SOM) are the most commonly used among the different clustering methods. K-
means takes an input parameter, and then partitions a set of n items into K clusters . The Self-
Organizing Map (SOM) is a method for an unsupervised learning, based on artificial neurons
clustering technique. Clustering techniques can be used to reduce the candidate set in
collaborative-based algorithms.

17
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Decision tree: Decision tree is based on the methodology of tree graphs which is constructed by
analyzing a set of training examples for which the class labels are known. They are then applied
to classify previously unseen examples. If trained on very high quality data, they have the ability
to make very accurate predictions. Decision trees are more interpretable than other classifier such
as Support Vector machine (SVM) and Neural Networks because they combine simple questions
about data in an understandable manner. Decision trees are also flexible in handling items with
mixture of real-valued and categorical features as well as items that have some specific missing
features.

Artificial Neural network: ANN is a structure of many connected neurons (nodes) which are
arranged in layers in systematic ways. The connections between neurons have weights associated
with them depending on the amount of influence one neuron has on another. There are some
advantages in using neural networks in some special problem situations. For example, due to the
fact that it contains many neurons and also assigned weight to each connection, an artificial
neural network is quite robust with respect to noisy and erroneous data sets. ANN has the ability
of estimating nonlinear functions and capturing complex relationships in data sets also, they can
be efficient and even operate if part of the network fails. The major disadvantage is that it is hard
to come up with the ideal network topology for a given problem and once the topology is
decided this will act as a lower bound for the classification error.

Link analysis: Link Analysis is the process of building up networks of interconnected objects in
order to explore pattern and trends. It has presented great potentials in improving the
accomplishment of web search. Link analysis consists of PageRank and HITS algorithms. Most
link analysis algorithms handle a web page as a single node in the web graph.

Regression: Regression analysis is used when two or more variables are thought to be
systematically connected by a linear relationship. It is a powerful and diversity process for
analyzing associative relationships between dependent variable and one or more independent
variables. Uses of regression contain curve fitting, prediction, and testing systematic hypotheses
about relationships between variables. The curve can be useful to identify a trend within dataset,
whether it is linear, parabolic, or of some other forms.

Bayesian Classifiers: They are probabilistic framework for solving classification problems
which is based on the definition of conditional probability and Bayes theorem. Bayesian
classifiers consider each attribute and class label as random variables. Given a record of N
features (A1, A2, ..., AN), the goal of the classifier is to predict class Ck by finding the value of
Ck that maximizes the posterior probability of the class given the data P(Ck|A1, A2, ..., AN) by
applying Bayes’ theorem, P(Ck|A1, A2, ..., AN) « P(A1, A2, ..., AN|Ck)P(Ck). The most
commonly used Bayesian classifier is known as the Naive Bayes Classifier. In order to estimate
the conditional probability, P(A1, A2, ..., AN|Ck), a Naive Bayes Classifier assumes the
probabilistic independence of the attributes that is, the presence or absence of a particular
attribute is unrelated to the presence or absence of any other. This assumption leads to P(Al, A2,

18
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..., AN|Ck) = P(A1|Ck)P(A2|Ck)... P(AN|Ck). The main benefits of Naive Bayes classifiers are
that they are robust to isolated noise points and irrelevant attributes, and they handle missing
values by ignoring the instance during probability estimate calculations. However, the
independence assumption may not hold for some attributes as they might be correlated. In this
case, the usual approach is to use Bayesian Networks. Bayesian classifiers may prove practical
for environments in which knowledge of user preferences changes slowly with respect to the
time needed to build the model but are not suitable for environments in which users preference
models must be updated rapidly or frequently. It is also successful in model-based
recommendation systems because it is often used to derive a model for content-based
recommendation systems.

Matrix completion techniques: The essence of matrix completion technique is to predict the
unknown values within the user-item matrices. Correlation based K-nearest neighbor is one of
the major techniques employed in collaborative filtering recommendation systems. They depend
largely on the historical rating data of users on items. Most of the time, the rating matrix is
always very big and sparse due to the fact that users do not rate most of the items represented
within the matrix. This problem always leads to the inability of the system to give reliable and
accurate recommendations to users. Different variations of low rank models have been used in
practice for matrix completion especially toward application in collaborative filtering . Formally,
the task of matrix completion technique is to estimate the entries of a matrix, MERmxn , when a
subset, QC{(i,j):1<i<m,1<j<n}

of the new entries is observed, a particular set of low rank matrices,
MA=UVT , where UeRmxk and VERmxk and k<«min(m,n)

. The most widely used algorithm in practice for recovering M from partially observed matrix
using low rank assumption is Alternating Least Square (ALS) minimization which involves
optimizing over U and V in an alternating manner to minimize the square error over observed
entries while keeping other factors fixed. Candes and Recht proposed the use of matrix
completion technique in the Netflix problem as a practical example for the utilization of the
technique. Keshavan et al. used SVD technique in an OptSpace algorithm to deal with matrix
completion problem. The result of their experiment showed that SVD is able provide a reliable
initial estimate for spanning subspace which can be further refined by gradient descent on a
Grassmannian manifold. Model based techniques solve sparsity problem. The major drawback of
the techniques is that the model building process is computationally expensive and the capacity
of memory usage is highly intensive. Also, they do not alleviate the cold-start problem.

Pros and Cons of collaborative filtering technigues:

Collaborative Filtering has some major advantages over CBF in that it can perform in domains

19
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where there is not much content associated with items and where content is difficult for a
computer system to analyze (such as opinions and ideal). Also, CF technique has the ability to
provide serendipitous recommendations, which means that it can recommend items that are
relevant to the user even without the content being in the user’s profile. Despite the success of
CF techniques, their widespread use has revealed some potential problems such as follows.

Cold-start problem:

This refers to a situation where a recommender does not have adequate information about a user
or an item in order to make relevant predictions. This is one of the major problems that reduce
the performance of recommendation system. The profile of such new user or item will be empty
since he has not rated any item; hence, his taste is not known to the system.

Data sparsity problem:

This is the problem that occurs as a result of lack of enough information, that is, when only a few
of the total number of items available in a database are rated by users. This always leads to a
sparse user-item matrix, inability to locate successful neighbors and finally, the generation of
weak recommendations. Also, data sparsity always leads to coverage problems, which is the
percentage of items in the system that recommendations can be made .

Scalability:

This is another problem associated with recommendation algorithms because computation
normally grows linearly with the number of users and items . A recommendation technique that
is efficient when the number of dataset is limited may be unable to generate satisfactory number
of recommendations when the volume of dataset is increased. Thus, it is crucial to apply
recommendation techniques which are capable of scaling up in a successful manner as the
number of dataset in a database increases. Methods used for solving scalability problem and
speeding up recommendation generation are based on Dimensionality reduction techniques, such
as Singular Value Decomposition (SVD) method, which has the ability to produce reliable and
efficient recommendations.

Synonymy:

Synonymy is the tendency of very similar items to have different names or entries. Most
recommender systems find it difficult to make distinction between closely related items such as
the difference between e.g. baby wear and baby cloth. Collaborative Filtering systems usually
find no match between the two terms to be able to compute their similarity. Different methods,
such as automatic term expansion, the construction of a thesaurus, and Singular Value
Decomposition (SVD), especially Latent Semantic Indexing are capable of solving the
synonymy problem. The shortcoming of these methods is that some added terms may have
different meanings from what is intended, which sometimes leads to rapid degradation of
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recommendation performance.

Examples of collaborative systems:

Ringo is a user-based CF system which makes recommendations of music albums and artists. In
Ringo, when a user initially enters the system, a list of 125 artists is given to the user to rate
according to how much he likes listening to them. The list is made up of two different sections.
The first session consists of the most often rated artists, and this affords the active user
opportunity to rate artists which others have equally rated, so that there is a level of similarities
between different users’ profiles. The second session is generated upon a random selection of
items from the entire user-item matrix, so that all artists and albums are eventually rated at some
point in the initial rating phases.

GroupLens is a CF system that is based on client/server architecture; the system recommends
Usenet news which is a high volume discussion list service on the Internet. The short lifetime of
Netnews, and the underlying sparsity of the rating matrices are the two main challenges
addressed by this system. Users and Netnews are clustered based on the existing news groups in
the system, and the implicit ratings are computed by measuring the time the users spend reading
Netnews.

Amazon.com is an example of e-commerce recommendation engine that uses scalable item-to-
item collaborative filtering techniques to recommend online products for different users. The
computational algorithm scales independently of the number of users and items within the
database. Amazon.com uses an explicit information collection technique to obtain information
from users. The interface is made up of the following sections, your browsing history, rate these
items, and improve your recommendations and your profile. The system predicts users interest
based on the items he/she has rated. The system then compares the users browsing pattern on the
system and decides the item of interest to recommend to the user. Amazon.com popularized
feature of “people who bought this item also bought these items”. Example of Amazon.com
item-to-item contextual recommendation interface is shown in below figure
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Algorithms and Mathematical Derivation:

RECOMMENDATION CLASS USING TEST TRAIN DATA:

ALGORITHM FOR POPULARITY BASED RECOMMENDATION
#Class for Popularity based Recommender System model
class popularity_recommender_py():
def __init_ (self):
self.train_data = None
self.user_id = None
self.item_id = None

self.popularity_recommendations = None

#Create the popularity based recommender system model
def create(self, train_data, user_id, item_id):
self.train_data = train_data
self.user_id = user_id

self.item_id = item_id

#Get a count of user_ids for each unique song as recommendation score

train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id:
‘count'}).reset_index()

train_data_grouped.rename(columns = {'user_id": 'score'},inplace=True)

22



RECOMMENDATION SYSTEM USING DEEP LEARNING

#Sort the songs based upon recommendation score

train_data_sort = train_data_grouped.sort_values(['score’, self.item_id], ascending = [0,1])

#Generate a recommendation rank based upon score

train_data_sort['Rank’] = train_data_sort['score’].rank(ascending=0, method="first")

#Get the top 10 recommendations

self.popularity_recommendations = train_data_sort.head(10)

#Use the popularity based recommender system model to
#make recommendations
def recommend(self, user_id):

user_recommendations = self.popularity_recommendations

#Add user_id column for which the recommendations are being generated

user_recommendations['user_id'] = user_id
#Bring user_id column to the front

cols = user_recommendations.columns.tolist()
cols = cols[-1:] + cols[:-1]

user_recommendations = user_recommendations[cols]

return user_recommendations

23



RECOMMENDATION SYSTEM USING DEEP LEARNING

#Class for Item similarity based Recommender System model
class item_similarity_recommender_py():
def __init__ (self):

self.train_data = None

self.user_id = None

self.item_id = None

self.cooccurence_matrix = None

self.songs_dict = None

self.rev_songs_dict = None

self.item_similarity_recommendations = None

#Get unique items (songs) corresponding to a given user
def get_user_items(self, user):
user_data = self.train_data[self.train_data[self.user_id] == user]

user_items = list(user_data[self.item_id].unique())
return user_items

#Get unique users for a given item (song)
def get_item_users(self, item):
item_data = self.train_data[self.train_data[self.item_id] == item]

item_users = set(item_data[self.user_id].unique())

return item_users
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#Get unique items (songs) in the training data
def get_all_items_train_data(self):

all_items = list(self.train_data[self.item_id].unique())
return all_items

#Construct cooccurence matrix

def construct_cooccurence_matrix(self, user_songs, all_songs):

R R A R R R R R R
#Get users for all songs in user_songs.

HHH
user_songs_users =[]

for i in range(0, len(user_songs)):

user_songs_users.append(self.get_item_users(user_songs[i]))

HHHHHH
#Initialize the item cooccurence matrix of size
#len(user_songs) X len(songs)

HHHHHHH R

cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float)

HEHHEHH B

#Calculate similarity between user songs and all unique songs
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#in the training data
R R R R R e R R i
for i in range(0,len(all_songs)):

#Calculate unique listeners (users) of song (item) i

songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]]

users_i = set(songs_i_data[self.user_id].unique())
for j in range(0,len(user_songs)):

#Get unique listeners (users) of song (item) j

users_j = user_songs_users[j]

#Calculate intersection of listeners of songs i and j

users_intersection = users_i.intersection(users_j)

#Calculate cooccurence_matrix[i,j] as Jaccard Index
if len(users_intersection) !=0:
#Calculate union of listeners of songs i and j

users_union = users_i.union(users_j)
cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union))

else:

cooccurence_matrix[j,i] =0
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return cooccu rence_matrix

#Use the cooccurence matrix to make top recommendations
def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs):

print("Non zero values in cooccurence_matrix :%d" %
np.count_nonzero(cooccurence_matrix))

#Calculate a weighted average of the scores in cooccurence matrix for all user songs.
user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0])

user_sim_scores = np.array(user_sim_scores)[0].tolist()

#Sort the indices of user_sim_scores based upon their value
#Also maintain the corresponding score

sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True)

#Create a dataframe from the following
columns = ['user_id", 'song’, 'score’, 'rank’]
#index = np.arange(1) # array of numbers for the number of samples

df = pandas.DataFrame(columns=columns)

#Fill the dataframe with top 10 item based recommendations
rank =1
for i in range(0,len(sort_index)):

if ~np.isnan(sort_index[i][0]) and all_songs[sort_index[i][1]] not in user_songs and rank
<=10:
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df.loc[len(df)]=[user,all_songs[sort_index[i][1]],sort_index[i][0],rank]

rank = rank+1

#Handle the case where there are no recommendations
if df.shape[0] == 0:

print("The current user has no songs for training the item similarity based
recommendation model.")

return -1
else:

return df

#Create the item similarity based recommender system model
def create(self, train_data, user_id, item_id):

self.train_data = train_data

self.user_id = user_id

self.item_id = item_id

#Use the item similarity based recommender system model to
#make recommendations

def recommend(self, user):

HHHBHHH
#A. Get all unique songs for this user
HHBHH R

user_songs = self.get_user_items(user)
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print("No. of unique songs for the user: %d" % len(user_songs))

HHHHHHH R
#B. Get all unique items (songs) in the training data
HH

all_songs = self.get_all_items_train_data()
print("no. of unique songs in the training set: %d" % len(all_songs))

R R R B R A R A R R
#C. Construct item cooccurence matrix of size
#len(user_songs) X len(songs)

HHHHHH A

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

T
#D. Use the cooccurence matrix to make recommendations
T

df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,
all_songs, user_songs)

return df_recommendations

#Get similar items to given items
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def get_similar_items(self, item_list):
user_songs = item_list

HHH R
#B. Get all unique items (songs) in the training data
HHH R

all_songs = self.get_all_items_train_data()
print("'no. of unique songs in the training set: %d" % len(all_songs))

R R R B R A R A R R
#C. Construct item cooccurence matrix of size
#len(user_songs) X len(songs)

HEHHHH R R R

cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

T
#D. Use the cooccurence matrix to make recommendations
HHH B

user =

df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,
all_songs, user_songs)

return df_recommendations
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EVALUATION OF PRECISION RECALL AND SVD:

ALGORITHM TO EVALUATE PRECISION AND PRECISION RECALL

class precision_recall_calculator():

def _init_ (self, test_data, train_data, pm, is_model):
self.test_data = test_data
self.train_data = train_data
self.user_test_sample = None
self.modell = pm

self.model2 = is_model

self.ism_training_dict = dict()
self.pm_training_dict = dict()

self.test_dict = dict()

#Method to return random percentage of values from a list
def remove_percentage(self, list_a, percentage):

k = int(len(list_a) * percentage)

random.seed(0)

indicies = random.sample(range(len(list_a)), k)

new_list = [list_a[i] for i in indicies]

return new_list

#Create a test sample of users for use in calculating precision
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#and recall
def create_user_test_sample(self, percentage):
#Find users common between training and test set

users_test_and_training =
list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id"].unique())))

print("Length of user_test_and_training:%d" % len(users_test_and_training))

#Take only random user_sample of users for evaluations

self.users_test_sample = self.remove_percentage(users_test and_training, percentage)
print("Length of user sample:%d" % len(self.users_test_sample))

#Method to generate recommendations for users in the user test sample

def get_test_sample_recommendations(self):
#For these test_sample users, get top 10 recommendations from training set
#self.ism_training_dict = {}

#self.pm_training_dict = {}
#self.test_dict = {}

for user_id in self.users_test_sample:
#Get items for user_id from item similarity model
print("Getting recommendations for user:%s" % user_id)
user_sim_items = self.model2.recommend(user_id)

self.ism_training_dict[user_id] = list(user_sim_items["song"])

#Get items for user_id from popularity model
user_sim_items = self.modell.recommend(user_id)
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self.pm_training_dict[user_id] = list(user_sim_items["song"])

#Get items for user_id from test_data
test_data_user = self.test_data[self.test_data['user_id'] == user_id]

self.test_dict[user_id] = set(test_data_user['song'].unique() )

#Method to calculate the precision and recall measures
def calculate_precision_recall(self):
#Create cutoff list for precision and recall calculation

cutoff_list = list(range(1,11))

#For each distinct cutoff:
# 1. For each distinct user, calculate precision and recall.

# 2. Calculate average precision and recall.

ism_avg_precision_list =[]
ism_avg_recall_list =]
pm_avg_precision_list =[]

pm_avg_recall_list =]

num_users_sample = len(self.users_test_sample)
for N in cutoff_list:

ism_sum_precision =0

ism_sum_recall =0

pm_sum_precision =0
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pm_sum_recall =0
ism_avg_precision = 0
ism_avg_recall =0
pm_avg_precision =0

pm_avg_recall =0

for user_id in self.users_test_sample:

ism_hitset =
self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N]))

pm_hitset =
self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N]))

testset = self.test_dict[user_id]

pm_sum_precision += float(len(pm_hitset))/float(N)

pm_sum_recall += float(len(pm_hitset))/float(len(testset))

ism_sum_precision += float(len(ism_hitset))/float(len(testset))

ism_sum_recall += float(len(ism_hitset))/float(N)

pm_avg_precision = pm_sum_precision/float(hum_users_sample)

pm_avg_recall = pm_sum_recall/float(num_users_sample)

ism_avg_precision = ism_sum_precision/float(hnum_users_sample)

ism_avg_recall = ism_sum_recall/float(num_users_sample)

ism_avg_precision_list.append(ism_avg_precision)

ism_avg_recall_list.append(ism_avg_recall)
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pm_avg_precision_list.append(pm_avg_precision)

pm_avg_recall_list.append(pm_avg_recall)

return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list,
ism_avg_recall_list)

#A wrapper method to calculate all the evaluation measures
def calculate_measures(self, percentage):
#Create a test sample of users

self.create_user_test_sample(percentage)

#Generate recommendations for the test sample users

self.get_test sample_recommendations()

#Calculate precision and recall at different cutoff values

#for popularity mode (pm) as well as item similarity model (ism)

return self.calculate_precision_recall()

#return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list,
ism_avg_recall_list)
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Code Analysis and Output:

Implementation and Output

RECOMMENDATION SYSTEM USING DEEP LEARNING

RECOMMENDATION SYSTEM USING DEEP LEARNING
PREPARED BY

SOURIK BARMAN(CSE2014/806)

ANGSHUMAN MIDYA(CSE2014/022)

SUBHAM MISRA(CSE2014/0@8)

TIRTHANKAR GHOSH(CSE2814/611)

UNDER GUIDANCE OF

PROF . KAUSHIK MALLICK

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
RCCIIT

In [1]: %matplotlib inline
import tensorlow as tf
import pandas
from sklearn.cross_validation import train_test split
import numpy as np
import time
from sklearn.externals import joblib
import Recommenders as Recommenders
import Evaluation as Evaluation
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RETRIVING DATA FROM DATASETS

In [2]:
triplets_file = '10000.txt"
songs_metadata file = 'song data.csv'

song_df 1 = pandas.read_table(triplets_file,header=None)
song_df 1.columns = ['user_id', 'song id', 'listen_count’']

song_df_2 = pandas.read_csv(songs_metadata_file)

song_df = pandas.merge(song_df_1, song_df_2.drop_duplicates(['song_id']), on="song_id", how="left")

Explore data

Music data shows how many times a user listened to a song, as well as the details of the song.

In [4]: song_df.head()

out[a]: user_id song_id listen_count title release artist_name year
0 b80344d063b5ccb3212f76538f2d9e43d87dca%  SOAKIMP12A8C130995 1 The Cove Thicker Than Water  Jack Johnson 0
1 b8&0344d063b5cch3212f76538f3d9e43d87dca% SOBBMDR12A8C13253B 2 Entre Dos Aguas Flamenco Para Nifios Paco De Lucia 1976
2 b80344d063b5ccb3212f76538f3d%e43d87dca%e SOBXHDL12A81C204C0 1 Stronger Graduation Kanye West 2007
3 bB80344d063b5ccb3212f76538f3d9e43d87dca%  SOBYHAJ12A6701BF1D 1 Constellations In Between Dreams  Jack Johnson 2005
4 b80344d063b5ccb3212f76538f3d%e43d87dca%e SODACBL12A8C13C273 1 Learn To Fly There Is Nothing Left To Lose Foo Fighters 1999

Length of the dataset

In [5]: len(song_df)

Out[5]: 2000000

A PROPER SUBSET OF ACTUAL DATASET

In [6]: song_df = song_ df.head(10060)

#Merge song title and artist_name columns to make a merged column

song_df[ 'song'] = song_df['title'].map(str) + " - " + song df['artist name']

Showing the most popular songs in the dataset

In [8]: song grouped = song_df.groupby(['song']).age({ 'listen_count': 'count'}).reset_index()
grouped sum = song_grouped[ 'listen_count'].sum()
song_grouped[ 'percentage’] = song_grouped['listen_count’].div(grouped_sum)*1ee
song_grouped.sort_values(['listen_count', 'song'], ascending = [@,1])

out[8]: song listen_count percentage
3660 Sehr kosmisch - Harmonia 45 045
4678 Undo - Bjork 32 0.32
§108 You're The One - Dwight Yoakam 32 0.32
1071 Dog Days Are Over (Radio Edit) - Florence + Th... 28 0.28
3656 Secrets - OneRepublic 28 0.28
4378 The Scientist - Coldplay 27 0.27
4712 Use Somebody - Kings Of Leon 27 0.27
3476 Revelry - Kings Of Leon 26 0.26
1387 Fireflies - Charttraxx Karaoke 24 0.24
1862 Hom Concerto No. 4 in E flat K495 Il. Romanc. . 23 023
1805 Hey_ Soul Sister - Train 2 0.22
8032 Yellow - Coldplay 22 0.22
808 Clocks - Coldplay 21 0.21

220 RIS i " T STy
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Count number of unique users in the dataset

In [1@]: users = song_df[ user_id'].unique()
In [11]: len(users)
out[11]: 365
Count the number of unique songs in the dataset
In [12]:
songs = song_df['song'].unique()
len(songs)
out[12]: 5151
Create a song recommender
In [17]: train_data, test_data = train_test_split(song_df, test_size = .20, random_state=8)
print(train_data.head(5))
user_id song_id \
7389 94d5bdc37683950e90c56c9b32721edb5d347600 SOXNZOW12ABO17F756
9275 1@12ecfd277b96487ed8357d02fa8326b13696a5 SOXHYVQ12AB@187949
2995 15415fa2745b344bce958967c34672a891792763 SO0SZAZ12A6DAFADF8
5316 ffadf9297299945¢0513cd87939d91d8b60©2936b SOWDIEIL2A8C1339FE
356 5a%05feeefclff3df7ca8e7d57edb6e8s863dbosd SOAMPRIL2ASAEASF38
listen_count title \
7389 2 Half Oof My Heart
9275 1 The Beautiful People
2995 1 Sanctify Yourself
5316 a4 Heart Cooks Brain
356 20 Rerol
In [13]: #Recommenders.popularity recommender py
POPULARITY BASED RECOMMENDER CLASS
In [18]: pm = Recommenders.popularity_recommender_py()
pm.create(train_data, 'user_id', 'song')
Using the popularity model to make some predictions
In [19]: user_id = users[5]
pm. recommend (user_id)
out[19]: user_id song score Rank
3194 4bd88bfb25263a75bbdd467e740184ae570ebdf Sehr kosmisch - Harmonia 37 1.0
4083 4bd88bfb25263a75bbdd467e74018f4ae570e5df Undo - Bjark 27 20
831 4bdB88bfb25263a75bbdd467e74018f4ae570e5df Dog Days Are Over (Radio Edit) - Florence + Th... 24 3.0
4443 4bd88bfb25263a75bbdd467e74018f4ae570e5df You're The One - Dwight Yoakam 24 4.0
3034 4bd88bfb25263a75bbdd467e74018f4ae570e5df Revelry - Kings Of Leon 21 5.0
3189 4bd88bfb25263a75bbdd467e740184ae570ebdf Secrets - OneRepublic 21 6.0
4112 4bd88bfb25263a75bbdd467e74018f4ae570e5df Use Somebody - Kings Of Leon 21 7.0
1207 4bd88bfb25263a75bbdd467e74018f4ae570e5df Fireflies - Charttraxx Karacke 20 8.0
1677 4bd88bfb25263a75bbdd467e74018/4ae570e5df Hey_ Soul Sister - Train 19 9.0
1626 4bdB88bfb25263a75bbdd467e74018f4ae570e5df  Horn Concerto No. 4 in E flat K495: II. Romanc... 19 10.0
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In [ ]:

In [21]:

In [22]:

Building a song recommender with personalization

We now create an item similarity based collaborative filtering model that allows us to make personalized recommendations to each user.

Class for an item similarity based personalized recommender system

#Recommenders.item_similarity recommender py

Create an instance of item similarity based recommender class

is_model = Recommenders.item_similarity recommender_py()
is_model.create(train_data, ‘user_id', 'song’)

Use the personalized model to make some song recommendations

#Print the songs for the user in training data

user_id = users[5]

user_items = is_model.get_user_items(user_id)

#

[ o e ettt et ")
print("Training data songs for the user userid:
[FME] "================================m=eoo—c—cccccmmeococcceooo oo oo ")

for user_item in user_items:
print(user_item)

print("-------mmmima e =
print("Recommendation process going on:")
PPt (- o mm e "y

is_model.recommend(user_id)

out[22]:

Just Lose It - Eminem

Without Me - Eminem

16 Candles - The Crests

Speechless - Lady GaGa

Push It - Salt-N-Pepa

Ghosts 'n' stuff (original Instrumental Mix) - Deadmaus
Say My Name - Destiny's Child

My Dad's Gone Crazy - Eminem / Hailie Jade
The Real Slim Shady - Eminem

somebody To Love - Justin Bieber

Forgive Me - Leona Lewis

Missing You - John Waite

Ya Nada Queda - Kudai

No. of unique songs for the user: 13
no. of unique songs in the training set: 4483
MNon zero values in cooccurence_matrix :2097

user_id song score rank

0 4bd88bfb25263a75bbdd467e74018f4ae570e5df Superman - Eminem / Dina Rae  0.088692 1
1 4bde8bib25263a75bbdd467e74018f4ae570e5df Mockingbird - Eminem  0.067663
4bd88bfb25263a75bbdd467e74018f4ae570ebdf I'm Back - Eminem  0.065385
4bd88bfb25263a75bbdd467e74018f4ae570ebdf U Smile - Justin Bieber 0.064525
4bd88bfb25263a75bbdd467e74018f4ae570e5df Here Without You - 3 Doors Down  0.062293
4bd88bfb25263a75bbdd467e74018f4ae570e5df Hellbound - J-Black & Masta Ace  0.055769
4bd88bfb25263a75bbdd467e74018f4ae570ebdf The Seed (2.0) - The Roots / Cody Chestnutt 0.052564
4bd88bfb25263a75bbdd467e74018f4ae570e5df I'm The One Who Understands (Edit Version) - War  0.052564

@ N @ o koW N
© ®m N ® ;s W N

4bd88bfb25263a75bbdd467e74018f4ae570e5df Falling - Iration  0.052564

o e D e e ca000 Dol O o Ghoacd iz

39




RECOMMENDATION SYSTEM USING DEEP LEARNING

We can also apply the model to find similar songs to any song in the dataset

In [24]: is _model.get similar_items(['U Smile - Justin Bieber'])
no. of unique songs in the training set: 4483
Non zero values in cooccurence matrix :271
out[24]: user_id song score rank
0 Somebody To Love - Justin Bieber 0.428571 1
1 Bad Company - Five Finger Death Punch  0.375000 2
2 Love Me - Justin Bieber 0.333333 3
3 One Time - Justin Bieber 0.333333 4
4 Here Without You - 3 Doors Down  0.333333 5
5 Stuck In The Moment - Justin Bieber 0.333333 6
6 Teach Me How To Dougie - California Swag District  0.333333 7
7 Paper Planes - M.L.A.  0.333333 3
8 Already Gone - Kelly Clarksen  0.333333 9
9 The Funeral (Album Version) - Band Of Horses  0.300000 10
personalized recommender model to get similar songs for the following song.
In [25]: song = 'Yellow - Coldplay'
##H#Fill in the code here
is_model.get_similar_items([song])
no. of unique songs in the training set: 4483
Non zero values in cooccurence_matrix :969
out[25]: user_id song score rank
0 Fix You - Coldplay 0.375000 1
1 Creep (Explicit) - Radiohead 0.281667 2
2 Clocks - Coldplay 0.280000 3
3 Seven Nation Army - The White Stripes  0.250000 4
Using the personalized model to make recommendations for the following user id
In [28]: user_id = users[7]

#Fill in the code here
user_items = is_model.get user_ items(user_id)

#

o R (T e T ")
print("Training data songs for the user userid: %s:" % user_id)

[ T (e )

for user_item in user_items:
print(user_item)

e R (e )
print(“Recommendation process going o
print("--

#Recommend songs for the user using personalized model
is_model.recommend(user_id)

swallowed In The sea - coldplay
Life In Technicolor ii - Coldplay
Life In Technicolor - Coldplay
The scientist - coldplay

Trouble - Coldplay

Strawberry Swing - Coldplay

Lost! - Coldplay

Clocks - Coldplay

No. of unique songs for the user: 8
no. of unique songs in the training set: 4483
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Quantitative comparison between the models

We now formally compare the popularity and the personalized models using precision-recall curves.

Class to calculate precision and recall (This can be used as a black box)

In [2@]: #Evaluation.precision recall calculator

Use the above precision recall calculator class to calculate the evaluation measures

In [26]: start = time.time()

#Define what percentage of users to use for precision recall calculation
user_sample = @.05

#Instantiate the precision recall calculator class
pr = Evaluation.precision_recall_calculator(test_data, train_data, pm, is_model)

#Call method to calculate precision and recall values
(pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, ism_avg_recall list) = pr.calculate_measures(user_sample)

end = time.time()
print(end - start)

Length of user_test_and_training:319

Length of user sample:15

Getting recommendations for user:5235516080c0ad60972e4f4ce72238697e4bbceb
No. of unique songs for the user: 8

no. of unique songs in the training set: 4483

Non zero values in cooccurence_matrix :528

Getting recommendations for user:b88344de63b5ccb3212f7653813d9e43d87dcage
No. of unique songs for the user: 33

no. of unique songs in the training set: 4483

Non zero values in cooccurence_matrix :3683

Getting recommendations for user:484b69dde13dflececfd504886d4f647ch32bost

No. of unique songs for the user: 42
. . cis N

Code to plot precision recall curve

In [27]: import pylab as pl

#Method to generate precision and recall curve
def plot_precision recall(ml_precision_list, mi_recall list, m1_label, m2_precision_list, m2_recall list, m2_label):
pl.clf()
pl.plot(mi_recall list, ml_precision_list, label=m1_label)
pl.plot(m2_recall list, m2 _precision_list, label=m2_label)
pl.xlabel('Recall")
pl.ylabel('Precision")
pl.ylim([e.e, 0.20])
pl.xlim([e.8, ©.20])
pl.title( 'Precision-Recall curve')
#pl.Llegend(loc="upper right")
pl.legend(loc=9, bbox_to_anchor=(0.5, -8.2))
pl.show()

In [22]: print("Plotting precision recall curves.")
plot_precision_recall(pm avg_precision_list, pm avg_recall_list, "popularity model”,
ism_avg_precision_list, ism avg_recall list, "item similarity model™)
Plotting precision recall curves.

Precision-Recall curve
0.20

015

o
=
S

Precision

0.05
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Generate Precision Recall curve using pickled results on a larger data subset(Python 3)

In [23]: print("Plotting precision recall curves for a larger subset of data (100,000 rows) (user sample = ©.005).")
#Read the persisted files
pm_avg_precision_list = joblib.load('pm_avg precision list 3.pkl')
pm_avg_recall_list = joblib.load('pm avg_recall list_3.pkl")
ism_avg_precision_list = joblib.lead('ism_avg precision_list 3.pkl')
ism_avg recall list = joblib.load('ism avg recall list 3.pkl")
print("Plotting precision recall curves.™)
plot_precision_recall(pm avg precision_list, pm avg recall list, “popularity model",
ism_avg_precision_list, ism avg_recall_list, "item_similarity_model™)

Plotting precision recall curves for a larger subset of data (100,000 rows) (user sample = ©.005).
Plotting precision recall curves.

020 Precision-RgcaII curve

015 1
5
2 010 1
£

0.05 —/ 1

000

0.00 0.05 010 015 020
Recall
— popularity_model
— item_similarity_model
Generate Precision Recall curve using pickled results on a larger data subset(Python 2.7)
Generating Precision Recall curve using pickled results on a larger data subset
In [24]: print("Plotting precision recall curves for a larger subset of data (100,000 rows) (user sample = ©.005).")

pm_avg_precision_list = joblib.load('pm_avg precision list 2.pkl")

pm_avg recall list = joblib.load('pm_avg recall list 2.pkl")

ism_avg_precision_list = joblib.load('ism avg_precision_list_2.pkl")

ism_avg recall list = joblib.load('ism_avg recall list 2.pkl")

print("Plotting precision recall curves.")

plot_precision_recall(pm_avg_precision_list, pm avg recall list, “popularity model”,
ism_avg_precision_list, ism avg_recall_list, "item similarity model™)

Plotting precision recall curves for a larger subset of data (100,000 rows) (user sample = ©.005).
Plotting precision recall curves.

Precision-Recall curve

020

015

010

Precision

0.05

The curve shows that the personalized model provides much better performance over the popularity model.
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Matrix Factorization based Recommender System

Using SVD matrix factorization based collaborative filtering recommender system

The following code implements a Singular Value Decomposition (SVD) based matrix factorization collaborative filtering
recommender system. The user ratings matrix used is a small matrix as follows:

Item@ Iteml Item2 Item3

Usere 3 i 2 3
Userl 4 3 4 3
User2 3 2 1 5
User3 1 6 5 2
Userd ] 2] 5 Q@

As we can see in the above matrix, all users except user 4 rate all items. The code calculates predicted recommendations for
user 4.

Import the required libraries

In [25]:

#Code source written with help from:
#http://antoinevastel .github.io/machine%2@learning/python/2616/62/14/svd-recommender-system.html

import math as mt

import csv

from sparsesvd import sparsesvd #used for matrix factorization
import numpy as np|

from scipy.sparse import csc_matrix #used for sparse matrix

from scipy.sparse.linalg import * #used for matrix multiplication

#Note: You may need to install the library sparsesvd. Documentation for
#sparsesvd method can be found here:
#https://pypi.python.orq/pypi/sparsesvd/

In [26]:

Methods to compute SVD and recommendations

#constants defining the dimensions of our User Rating Matrix (URM)
MAX_PID = 4
MAX_UID = 5

#Compute SVD of the user ratings matrix
def computeSvD(urm, K):
U, s, Vt = sparsesvd(urm, K)

dim = (len(s), len(s))
S = np.zeros(dim, dtype=np.float32)
for i in range(®, len(s)):

S[i,i] = mt.sqrt(s[i])

U = csc_matrix(np.transpose(U), dtype=np.float32)
S = csc_matrix(S, dtype=np.float32)
Vt = csc_matrix(vt, dtype=np.float32)

return U, S, vt

#Compute estimated rating for the test user
def computeEstimatedRatings(urm, U, S, Vt, uTest, K, test):
rightTerm = s*vt

estimatedRatings = np.zeros(shape=(MAX_UID, MAX_PID), dtype=np.floatil6)
for userTest in uTest:
prod = U[userTest, :]*rightTerm
#we convert the vector to dense format in order to get the indices
#of the movies with the best estimated ratings
estimatedRatings[userTest, :] = prod.todense()
recom = (-estimatedRatings[userTest, :]).argsort()[:250]
return recom
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In [27]:

SVD to make predictions for a test user id

#Used in SvD calculation (number of latent factors)
K=2

#Initiaglize a sample user rating matrix
urm = np.array([[3, 1, 2, 3],[4, 3, 4, 3],[3, 2, 1, 5], [1, 6, 5, 2], [5, @,0 , @]])
urm = csc_matrix(urm, dtype=np.float32)

#Compute SVD of the input user ratings matrix
U, S, Vt = computeSvD(urm, K)

#Test user set as user id 4 with ratings [e, &, 5, @]
uTest = [4]
print("User id for whom recommendations are needed: %d" % uTest[@])

#Get estimated rating for test user

print("Predictied ratings:")

uTest_recommended_items = computeEstimatedRatings(urm, U, S, vt, uTest, K, True)
print(uTest_recommended_items)

User id for whom recommendations are needed: 4
Predictied ratings:
[e321]

PREDICTED RECOMMENDATION

a.) Change the input matrix row for test userid 4 in the user ratings matrix to the following value. Note the difference in
predicted recommendations in this case.

i) [5eee]

In [28]:

Next, we print the matrices U, S and vt and try to interpret them. Think how the points for users and items will look like in a
2 dimensional axis. For example, the following code plots all user vectors from the matrix U in the 2 dimensional space.
Similarly, we plot all the item vectors in the same plot from the matrix vt.

#matplotlib inline
from pylab import *

#Plot all the users
print("Matrix Dimensions for U")
print(U.shape)

for i1 in range(e, U.shape[®@]):
plot(u[i,e], u[i,1], marker = "*", label="user"+str(i))

for j in range(@, Vt.T.shape[8]):
plot(vt.T[j,0], vt.T[j,1], marker = 'd", label="item"+str(j))

legend(loc="upper right")

title('user vectors in the Latent semantic space’)
ylim([-0.7, ©.7])

xlim([-8.7, 8])

show()
Matrix Dimensions for U
(5, 2)
User vectors in the Latent semantic space
06 * |+ user0
04 »—= userl
) *—= user2
-
02 . * *— user3
. *—= userd
00 40 item0
+—+ iteml
02 +—+ item2
04 . +—+ item3 ||
+
-06
L o*
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Conclusion and Future Scope:

Recommender systems open new opportunities of retrieving personalized information on the
Internet. It also helps to alleviate the problem of information overload which is a very common
phenomenon with information retrieval systems and enables users to have access to products and
services which are not readily available to users on the system. This paper discussed the two
traditional recommendation techniques and highlighted their strengths and challenges with
diverse kind of hybridization strategies used to improve their performances. Various learning
algorithms used in generating recommendation models and evaluation metrics used in measuring
the quality and performance of recommendation algorithms were discussed. This knowledge will
empower researchers and serve as a road map to improve the state of the art recommendation
techniques.
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