

1

RECOMMENDATION SYSTEM USING DEEP LEARNING

Recommendation System Using Deep Learning
Report submitted for the partial fulfillment of the requirements for the degree of

Bachelor of Technology in

Computer Science and Engineering

Submitted by

 Name and Roll Number

Tirthankar Ghosh(CSE2014/011)

11700114091

Subham Misra(CSE2014/008)

11700114080

Sourik Barman(CSE2014/006)

11700114071

Angshuman Midya(CSE2014/022)

11700114006

 Under the Guidance of Mr. Koushik Mallick (Assistant Professor(CSE),RCCIIT)

RCC Institute of Information Technology

Canal South Road, Beliaghata, Kolkata – 700 015

[Affiliated to West Bengal University of Technology]

2

RECOMMENDATION SYSTEM USING DEEP LEARNING

Acknowledgement

We would like to express our sincere gratitude to Mr. Koushik Mallick of the department of

Computer Science and Engineering, whose role as project guide was invaluable for the project.

We are extremely thankful for the keen interest he took in advising us, for the books and reference

materials provided for the moral support extended to us.

Last but not the least we convey our gratitude to all the teachers for providing us the technical skill

that will always remain as our asset and to all non-teaching staff for the gracious hospitality they

offered us.

Place: RCCIIT, Kolkata

Date: 16.05.2018

 Tirthankar Ghosh

 Subham Misra

 Sourik Barman

 Angshuman Midya

Department of Computer Science and Engineering

RCCIIT, Beliaghata,

Kolkata – 700 015,

West Bengal, India

3

RECOMMENDATION SYSTEM USING DEEP LEARNING

Approval

This is to certify that the project report entitled “Recommendation System Using Deep

Learning” prepared under my supervision by Tirthankar Ghosh, Subham Misra, Sourik Barman

and Angshuman Midya be accepted in partial fulfillment for the degree of Bachelor of Technology

in Computer Science and Engineering.

It is to be understood that by this approval, the undersigned does not necessarily endorse or approve

any statement made, opinion expressed or conclusion drawn thereof, but approves the report only.

……………………………………….. … ………………………………………

Dr.Siddhartha Bhattacharyya. Mr.Koushik Mallick

HOD,CSE Assistant Professor

RCC Institute of Information Technology RCC Institute of Information Technology

4

RECOMMENDATION SYSTEM USING DEEP LEARNING

INDEX:

Contents

1. Introduction

2. Literature Review

3. Objective

4.System Design

5. Algorithm and Mathematical Derivation

6.Code Analysis and Output

7. Conclusion and Future Scope

 6.Reference

Page Numbers

5

6

8

9

22

36

45

46

5

RECOMMENDATION SYSTEM USING DEEP LEARNING

Introduction:

The explosive growth in the amount of available digital information and the number of visitors to

the Internet have created a potential challenge of information overload which hinders timely

access to items of interest on the Internet. Information retrieval systems, such as Google,

DevilFinder and Altavista have partially solved this problem but prioritization and

personalization (where a system maps available content to user’s interests and preferences) of

information were absent. This has increased the demand for recommender systems more than

ever before. Recommender systems are information filtering systems that deal with the problem

of information overload by filtering vital information fragment out of large amount of

dynamically generated information according to user’s preferences, interest, or observed

behavior about item . Recommender system has the ability to predict whether a particular user

would prefer an item or not based on the user’s profile.

Recommender systems are beneficial to both service providers and users . They reduce

transaction costs of finding and selecting items in an online shopping environment .

Recommendation systems have also proved to improve decision making process and quality . In

e-commerce setting, recommender systems enhance revenues, for the fact that they are effective

means of selling more products. In scientific libraries, recommender systems support users by

allowing them to move beyond catalog searches. Therefore, the need to use efficient and accurate

recommendation techniques within a system that will provide relevant and dependable

recommendations for users cannot be over-emphasized.

6

RECOMMENDATION SYSTEM USING DEEP LEARNING

Literature Review:

 Recommender system is defined as a decision making strategy for users under complex

information environments . Also, recommender system was defined from the perspective of E-

commerce as a tool that helps users search through records of knowledge which is related to

users’ interest and preference . Recommender system was defined as a means of assisting and

augmenting the social process of using recommendations of others to make choices when there is

no sufficient personal knowledge or experience of the alternatives . Recommender systems

handle the problem of information overload that users normally encounter by providing them

with personalized, exclusive content and service recommendations. Recently, various approaches

for building recommendation systems have been developed, which can utilize either

collaborative filtering, content-based filtering or hybrid filtering . Collaborative filtering

technique is the most mature and the most commonly implemented. Collaborative filtering

recommends items by identifying other users with similar taste; it uses their opinion to

recommend items to the active user. Collaborative recommender systems have been

implemented in different application areas. GroupLens is a news-based architecture which

employed collaborative methods in assisting users to locate articles from massive news database

. Ringo is an online social information filtering system that uses collaborative filtering to build

users profile based on their ratings on music albums . Amazon uses topic diversification

algorithms to improve its recommendation . The system uses collaborative filtering method to

overcome scalability issue by generating a table of similar items offline through the use of item-

to-item matrix. The system then recommends other products which are similar online according

to the users’ purchase history. On the other hand, content-based techniques match content

resources to user characteristics. Content-based filtering techniques normally base their

predictions on user’s information, and they ignore contributions from other users as with the case

of collaborative techniques . Fab relies heavily on the ratings of different users in order to create

a training set and it is an example of content-based recommender system. Some other systems

that use content-based filtering to help users find information on the Internet include Letizia .

The system makes use of a user interface that assists users in browsing the Internet; it is able to

track the browsing pattern of a user to predict the pages that they may be interested in. Pazzani et

al. designed an intelligent agent that attempts to predict which web pages will interest a user by

using naive Bayesian classifier. The agent allows a user to provide training instances by rating

different pages as either hot or cold. Jennings and Higuchi describe a neural network that models

the interests of a user in a Usenet news environment.

7

RECOMMENDATION SYSTEM USING DEEP LEARNING

Despite the success of these two filtering techniques, several limitations have been identified.

Some of the problems associated with content-based filtering techniques are limited content

analysis, overspecialization and sparsity of data . Also, collaborative approaches exhibit cold-

start, sparsity and scalability problems. These problems usually reduce the quality of

recommendations. In order to mitigate some of the problems identified, Hybrid filtering, which

combines two or more filtering techniques in different ways in order to increase the accuracy and

performance of recommender systems has been proposed . These techniques combine two or

more filtering approaches in order to harness their strengths while leveling out their

corresponding weaknesses . They can be classified based on their operations into weighted

hybrid, mixed hybrid, switching hybrid, feature-combination hybrid, cascade hybrid, feature-

augmented hybrid and meta-level hybrid . Collaborative filtering and content-based filtering

approaches are widely used today by implementing content-based and collaborative techniques

differently and the results of their prediction later combined or adding the characteristics of

content-based to collaborative filtering and vice versa. Finally, a general unified model which

incorporates both content-based and collaborative filtering properties could be developed . The

problem of sparsity of data and cold-start was addressed by combining the ratings, features and

demographic information about items in a cascade hybrid recommendation technique in . In

Ziegler et al. , a hybrid collaborative filtering approach was proposed to exploit bulk taxonomic

information designed for exacting product classification to address the data sparsity problem of

CF recommendations, based on the generation of profiles via inference of super-topic score and

topic diversification. A hybrid recommendation technique is also proposed in Ghazantar and

Pragel-Benett , and this uses the content-based profile of individual user to find similar users

which are used to make predictions. In Sarwar et al. , collaborative filtering was combined with

an information filtering agent. Here, the authors proposed a framework for integrating the

content-based filtering agents and collaborative filtering. A hybrid recommender algorithm is

employed by many applications as a result of new user problem of content-based filtering

techniques and average user problem of collaborative filtering . A simple and straightforward

method for combining content-based and collaborative filtering was proposed by Cunningham et

al. . A music recommendation system which combined tagging information, play counts and

social relations was proposed in Konstas et al. . In order to determine the number of neighbors

that can be automatically connected on a social platform, Lee and Brusilovsky embedded social

information into collaborative filtering algorithm. A Bayesian mixed-effects model that

integrates user ratings, user and item features in a single unified framework was proposed by

Condiff et al..

8

RECOMMENDATION SYSTEM USING DEEP LEARNING

Objective:

On the Internet, where the number of choices is overwhelming, there is need to filter, prioritize

and efficiently deliver relevant information in order to alleviate the problem of information

overload, which has created a potential problem to many Internet users. Recommender systems

solve this problem by searching through large volume of dynamically generated information to

provide users with personalized content and services. This paper explores the different

characteristics and potentials of different prediction techniques in recommendation systems in

order to serve as a compass for research and practice in the field of recommendation systems.

9

RECOMMENDATION SYSTEM USING DEEP LEARNING

 System Design:

Phases of recommendation process

1. Information collection phase:

This collects relevant information of users to generate a user profile or model for the prediction

tasks including user’s attribute, behaviors or content of the resources the user accesses. A

recommendation agent cannot function accurately until the user profile/model has been well

constructed. The system needs to know as much as possible from the user in order to provide

reasonable recommendation right from the onset. Recommender systems rely on different types

of input such as the most convenient high quality explicit feedback, which includes explicit input

by users regarding their interest in item or implicit feedback by inferring user preferences

indirectly through observing user behavior . Hybrid feedback can also be obtained through the

combination of both explicit and implicit feedback. In E-learning platform, a user profile is a

collection of personal information associated with a specific user. This information includes

cognitive skills, intellectual abilities, learning styles, interest, preferences and interaction with

the system. The user profile is normally used to retrieve the needed information to build up a

model of the user. Thus, a user profile describes a simple user model. The success of any

recommendation system depends largely on its ability to represent user’s current interests.

Accurate models are indispensable for obtaining relevant and accurate recommendations from

any prediction techniques.

2. Explicit feedback:

The system normally prompts the user through the system interface to provide ratings for items

in order to construct and improve his model. The accuracy of recommendation depends on the

quantity of ratings provided by the user. The only shortcoming of this method is, it requires

effort from the users and also, users are not always ready to supply enough information. Despite

the fact that explicit feedback requires more effort from user, it is still seen as providing more

reliable data, since it does not involve extracting preferences from actions, and it also provides

transparency into the recommendation process that results in a slightly higher perceived

recommendation quality and more confidence in the recommendations .

10

RECOMMENDATION SYSTEM USING DEEP LEARNING

3. Implicit feedback:

The system automatically infers the user’s preferences by monitoring the different actions of

users such as the history of purchases, navigation history, and time spent on some web pages,

links followed by the user, content of e-mail and button clicks among others. Implicit feedback

reduces the burden on users by inferring their user’s preferences from their behavior with the

system. The method though does not require effort from the user, but it is less accurate. Also, it

has also been argued that implicit preference data might in actuality be more objective, as there

is no bias arising from users responding in a socially desirable way and there are no self-image

issues or any need for maintaining an image for others .

4. Hybrid feedback:

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order

to minimize their weaknesses and get a best performing system. This can be achieved by using

an implicit data as a check on explicit rating or allowing user to give explicit feedback only when

he chooses to express explicit interest.

5. Learning phase:

It applies a learning algorithm to filter and exploit the user’s features from the feedback gathered

in information collection phase.

6. Prediction/recommendation phase:

It recommends or predicts what kind of items the user may prefer. This can be made either

directly based on the dataset collected in information collection phase which could be memory

based or model based or through the system’s observed activities of the user.

11

RECOMMENDATION SYSTEM USING DEEP LEARNING

EYWORD)

 Fig:1

Recommendation filtering techniques:

The use of efficient and accurate recommendation techniques is very important for a system that

will provide good and useful recommendation to its individual users. This explains the

importance of understanding the features and potentials of different recommendation techniques.

Below figure shows the anatomy of different recommendation filtering techniques.

Fig:2

12

RECOMMENDATION SYSTEM USING DEEP LEARNING

1. Content-based filtering:

Content-based technique is a domain-dependent algorithm and it emphasizes more on the

analysis of the attributes of items in order to generate predictions. When documents such as web

pages, publications and news are to be recommended, content-based filtering technique is the

most successful. In content-based filtering technique, recommendation is made based on the user

profiles using features extracted from the content of the items the user has evaluated in the past .

Items that are mostly related to the positively rated items are recommended to the user. CBF uses

different types of models to find similarity between documents in order to generate meaningful

recommendations. It could use Vector Space Model such as Term Frequency Inverse Document

Frequency (TF/IDF) or Probabilistic models such as Naïve Bayes Classifier , Decision Trees or

Neural Networks to model the relationship between different documents within a corpus. These

techniques make recommendations by learning the underlying model with either statistical

analysis or machine learning techniques. Content-based filtering technique does not need the

profile of other users since they do not influence recommendation. Also, if the user profile

changes, CBF technique still has the potential to adjust its recommendations within a very short

period of time. The major disadvantage of this technique is the need to have an in-depth

knowledge and description of the features of the items in the profile.

 Pros and Cons of content-based filtering techniques:

CB filtering techniques overcome the challenges of CF. They have the ability to recommend new

items even if there are no ratings provided by users. So even if the database does not contain user

preferences, recommendation accuracy is not affected. Also, if the user preferences change, it

has the capacity to adjust its recommendations in a short span of time. They can manage

situations where different users do not share the same items, but only identical items according to

their intrinsic features. Users can get recommendations without sharing their profile, and this

ensures privacy . CBF technique can also provide explanations on how recommendations are

generated to users. However, the techniques suffer from various problems as discussed in the

literature . Content based filtering techniques are dependent on items’ metadata. That is, they

require rich description of items and very well organized user profile before recommendation can

be made to users. This is called limited content analysis. So, the effectiveness of CBF depends

on the availability of descriptive data. Content overspecialization is another serious problem of

CBF technique. Users are restricted to getting recommendations similar to items already defined

in their profiles.

13

RECOMMENDATION SYSTEM USING DEEP LEARNING

Examples of content-based filtering systems:

News Dude is a personal news system that utilizes synthesized speech to read news stories to

users. TF-IDF model is used to describe news stories in order to determine the short-term

recommendations which is then compared with the Cosine Similarity Measure and finally

supplied to a learning algorithm (NN). CiteSeer is an automatic citation indexing that uses

various heuristics and machine learning algorithms to process documents. Today, CiteSeer is

among the largest and widely used research paper repository on the web.

LIBRA is a content-based book recommendation system that uses information about book

gathered from the Web. It implements a Naïve Bayes classifier on the information extracted from

the web to learn a user profile to produce a ranked list of titles based on training examples

supplied by an individual user. The system is able to provide explanation on any

recommendations made to users by listing the features that contribute to the highest ratings and

hence allowing the users to have total confidence on the recommendations provided to users by

the system.

2. Collaborative filtering:

Collaborative filtering is a domain-independent prediction technique for content that cannot

easily and adequately be described by metadata such as movies and music. Collaborative

filtering technique works by building a database (user-item matrix) of preferences for items by

users. It then matches users with relevant interest and preferences by calculating similarities

between their profiles to make recommendations . Such users build a group called neighborhood.

An user gets recommendations to those items that he has not rated before but that were already

positively rated by users in his neighborhood. Recommendations that are produced by CF can be

of either prediction or recommendation. Prediction is a numerical value, Rij, expressing the

predicted score of item j for the user i, while Recommendation is a list of top N items that the

user will like the most as shown in below figure. The technique of collaborative filtering can be

divided into two categories: memory-based and model-based .

14

RECOMMENDATION SYSTEM USING DEEP LEARNING

Fig:3

2.1. Memory based techniques:

The items that were already rated by the user before play a relevant role in searching for a

neighbor that shares appreciation with him. Once a neighbor of a user is found, different

algorithms can be used to combine the preferences of neighbors to generate recommendations.

Due to the effectiveness of these techniques, they have achieved widespread success in real life

applications. Memory-based CF can be achieved in two ways through user-based and item-based

techniques. User based collaborative filtering technique calculates similarity between users by

comparing their ratings on the same item, and it then computes the predicted rating for an item

by the active user as a weighted average of the ratings of the item by users similar to the active

user where weights are the similarities of these users with the target item. Item-based filtering

techniques compute predictions using the similarity between items and not the similarity between

users. It builds a model of item similarities by retrieving all items rated by an active user from

the user-item matrix, it determines how similar the retrieved items are to the target item, then it

selects the k most similar items and their corresponding similarities are also determined.

Prediction is made by taking a weighted average of the active users rating on the similar items k.

Several types of similarity measures are used to compute similarity between item/user. The two

most popular similarity measures are correlation-based and cosine-based. Pearson correlation

coefficient is used to measure the extent to which two variables linearly relate with each other

and is defined as

15

RECOMMENDATION SYSTEM USING DEEP LEARNING

From the above equation,

S(a,u)is the mean rating given by user a while n is the total number of items in the user-item

space. Also, prediction for an item is made from the weighted combination of the selected

neighbors’ ratings, which is computed as the weighted deviation from the neighbors’ mean. The

general prediction formula is

Cosine similarity is different from Pearson-based measure in that it is a vector-space model

which is based on linear algebra rather that statistical approach. It measures the similarity

between two n-dimensional vectors based on the angle between them. Cosine-based measure is

widely used in the fields of information retrieval and texts mining to compare two text

documents, in this case, documents are represented as vectors of terms. The similarity between

two items u and v can be defined as

Similarity measure is also referred to as similarity metric, and they are methods used to calculate

the scores that express how similar users or items are to each other. These scores can then be

used as the foundation of user- or item-based recommendation generation. Depending on the

context of use, similarity metrics can also be referred to as correlation metrics or distance

metrics.

16

RECOMMENDATION SYSTEM USING DEEP LEARNING

Fig:4

17

RECOMMENDATION SYSTEM USING DEEP LEARNING

2.2. Model-based techniques:

This technique employs the previous ratings to learn a model in order to improve the

performance of Collaborative filtering Technique. The model building process can be done using

machine learning or data mining techniques. These techniques can quickly recommend a set of

items for the fact that they use pre-computed model and they have proved to produce

recommendation results that are similar to neighborhood-based recommender techniques.

Examples of these techniques include Dimensionality Reduction technique such as Singular

Value Decomposition (SVD), Matrix Completion Technique, Latent Semantic methods, and

Regression and Clustering. Model-based techniques analyze the user-item matrix to identify

relations between items; they use these relations to compare the list of top-N recommendations.

Model based techniques resolve the sparsity problems associated with recommendation systems.

The use of learning algorithms has also changed the manner of recommendations from

recommending what to consume by users to recommending when to actually consume a product.

It is therefore very important to examine other learning algorithms used in model-based

recommender systems:

Association rule: Association rules mining algorithms extract rules that predict the occurrence

of an item based on the presence of other items in a transaction. For instance, given a set of

transactions, where each transaction is a set of items, an association rule applies the form A → B,

where A and B are two sets of items . Association rules can form a very compact representation

of preference data that may improve efficiency of storage as well as performance. Also, the

effectiveness of association rule for uncovering patterns and driving personalized marketing

decisions has been known for sometimes . However, there is a clear relation between this method

and the goal of a Recommendation System but they have not become mainstream.

Clustering: Clustering techniques have been applied in different domains such as, pattern

recognition, image processing, statistical data analysis and knowledge discovery. Clustering

algorithm tries to partition a set of data into a set of sub-clusters in order to discover meaningful

groups that exist within them. Once clusters have been formed, the opinions of other users in a

cluster can be averaged and used to make recommendations for individual users. A good

clustering method will produce high quality clusters in which the intra-cluster similarity is high,

while the inter-cluster similarity is low. In some clustering approaches, a user can have partial

participation in different clusters, and recommendations are then based on the average across the

clusters of participation which is weighted by degree of participation. K-means and Self-

Organizing Map (SOM) are the most commonly used among the different clustering methods. K-

means takes an input parameter, and then partitions a set of n items into K clusters . The Self-

Organizing Map (SOM) is a method for an unsupervised learning, based on artificial neurons

clustering technique. Clustering techniques can be used to reduce the candidate set in

collaborative-based algorithms.

18

RECOMMENDATION SYSTEM USING DEEP LEARNING

Decision tree: Decision tree is based on the methodology of tree graphs which is constructed by

analyzing a set of training examples for which the class labels are known. They are then applied

to classify previously unseen examples. If trained on very high quality data, they have the ability

to make very accurate predictions. Decision trees are more interpretable than other classifier such

as Support Vector machine (SVM) and Neural Networks because they combine simple questions

about data in an understandable manner. Decision trees are also flexible in handling items with

mixture of real-valued and categorical features as well as items that have some specific missing

features.

Artificial Neural network: ANN is a structure of many connected neurons (nodes) which are

arranged in layers in systematic ways. The connections between neurons have weights associated

with them depending on the amount of influence one neuron has on another. There are some

advantages in using neural networks in some special problem situations. For example, due to the

fact that it contains many neurons and also assigned weight to each connection, an artificial

neural network is quite robust with respect to noisy and erroneous data sets. ANN has the ability

of estimating nonlinear functions and capturing complex relationships in data sets also, they can

be efficient and even operate if part of the network fails. The major disadvantage is that it is hard

to come up with the ideal network topology for a given problem and once the topology is

decided this will act as a lower bound for the classification error.

Link analysis: Link Analysis is the process of building up networks of interconnected objects in

order to explore pattern and trends. It has presented great potentials in improving the

accomplishment of web search. Link analysis consists of PageRank and HITS algorithms. Most

link analysis algorithms handle a web page as a single node in the web graph.

Regression: Regression analysis is used when two or more variables are thought to be

systematically connected by a linear relationship. It is a powerful and diversity process for

analyzing associative relationships between dependent variable and one or more independent

variables. Uses of regression contain curve fitting, prediction, and testing systematic hypotheses

about relationships between variables. The curve can be useful to identify a trend within dataset,

whether it is linear, parabolic, or of some other forms.

Bayesian Classifiers: They are probabilistic framework for solving classification problems

which is based on the definition of conditional probability and Bayes theorem. Bayesian

classifiers consider each attribute and class label as random variables. Given a record of N

features (A1, A2, …, AN), the goal of the classifier is to predict class Ck by finding the value of

Ck that maximizes the posterior probability of the class given the data P(Ck|A1, A2, …, AN) by

applying Bayes’ theorem, P(Ck|A1, A2, …, AN) ∝ P(A1, A2, …, AN|Ck)P(Ck). The most

commonly used Bayesian classifier is known as the Naive Bayes Classifier. In order to estimate

the conditional probability, P(A1, A2, …, AN|Ck), a Naive Bayes Classifier assumes the

probabilistic independence of the attributes that is, the presence or absence of a particular

attribute is unrelated to the presence or absence of any other. This assumption leads to P(A1, A2,

19

RECOMMENDATION SYSTEM USING DEEP LEARNING

…, AN|Ck) = P(A1|Ck)P(A2|Ck)… P(AN|Ck). The main benefits of Naive Bayes classifiers are

that they are robust to isolated noise points and irrelevant attributes, and they handle missing

values by ignoring the instance during probability estimate calculations. However, the

independence assumption may not hold for some attributes as they might be correlated. In this

case, the usual approach is to use Bayesian Networks. Bayesian classifiers may prove practical

for environments in which knowledge of user preferences changes slowly with respect to the

time needed to build the model but are not suitable for environments in which users preference

models must be updated rapidly or frequently. It is also successful in model-based

recommendation systems because it is often used to derive a model for content-based

recommendation systems.

Matrix completion techniques: The essence of matrix completion technique is to predict the

unknown values within the user-item matrices. Correlation based K-nearest neighbor is one of

the major techniques employed in collaborative filtering recommendation systems. They depend

largely on the historical rating data of users on items. Most of the time, the rating matrix is

always very big and sparse due to the fact that users do not rate most of the items represented

within the matrix. This problem always leads to the inability of the system to give reliable and

accurate recommendations to users. Different variations of low rank models have been used in

practice for matrix completion especially toward application in collaborative filtering . Formally,

the task of matrix completion technique is to estimate the entries of a matrix, M∈Rm×n , when a

subset, ΩC{(i,j):1⩽i⩽m,1⩽j⩽n}

of the new entries is observed, a particular set of low rank matrices,

M^=UVT , where U∈Rm×k and V∈Rm×k and k≪min(m,n)

. The most widely used algorithm in practice for recovering M from partially observed matrix

using low rank assumption is Alternating Least Square (ALS) minimization which involves

optimizing over U and V in an alternating manner to minimize the square error over observed

entries while keeping other factors fixed. Candes and Recht proposed the use of matrix

completion technique in the Netflix problem as a practical example for the utilization of the

technique. Keshavan et al. used SVD technique in an OptSpace algorithm to deal with matrix

completion problem. The result of their experiment showed that SVD is able provide a reliable

initial estimate for spanning subspace which can be further refined by gradient descent on a

Grassmannian manifold. Model based techniques solve sparsity problem. The major drawback of

the techniques is that the model building process is computationally expensive and the capacity

of memory usage is highly intensive. Also, they do not alleviate the cold-start problem.

Pros and Cons of collaborative filtering techniques:

Collaborative Filtering has some major advantages over CBF in that it can perform in domains

20

RECOMMENDATION SYSTEM USING DEEP LEARNING

where there is not much content associated with items and where content is difficult for a

computer system to analyze (such as opinions and ideal). Also, CF technique has the ability to

provide serendipitous recommendations, which means that it can recommend items that are

relevant to the user even without the content being in the user’s profile. Despite the success of

CF techniques, their widespread use has revealed some potential problems such as follows.

Cold-start problem:

This refers to a situation where a recommender does not have adequate information about a user

or an item in order to make relevant predictions. This is one of the major problems that reduce

the performance of recommendation system. The profile of such new user or item will be empty

since he has not rated any item; hence, his taste is not known to the system.

Data sparsity problem:

This is the problem that occurs as a result of lack of enough information, that is, when only a few

of the total number of items available in a database are rated by users. This always leads to a

sparse user-item matrix, inability to locate successful neighbors and finally, the generation of

weak recommendations. Also, data sparsity always leads to coverage problems, which is the

percentage of items in the system that recommendations can be made .

 Scalability:

This is another problem associated with recommendation algorithms because computation

normally grows linearly with the number of users and items . A recommendation technique that

is efficient when the number of dataset is limited may be unable to generate satisfactory number

of recommendations when the volume of dataset is increased. Thus, it is crucial to apply

recommendation techniques which are capable of scaling up in a successful manner as the

number of dataset in a database increases. Methods used for solving scalability problem and

speeding up recommendation generation are based on Dimensionality reduction techniques, such

as Singular Value Decomposition (SVD) method, which has the ability to produce reliable and

efficient recommendations.

 Synonymy:

Synonymy is the tendency of very similar items to have different names or entries. Most

recommender systems find it difficult to make distinction between closely related items such as

the difference between e.g. baby wear and baby cloth. Collaborative Filtering systems usually

find no match between the two terms to be able to compute their similarity. Different methods,

such as automatic term expansion, the construction of a thesaurus, and Singular Value

Decomposition (SVD), especially Latent Semantic Indexing are capable of solving the

synonymy problem. The shortcoming of these methods is that some added terms may have

different meanings from what is intended, which sometimes leads to rapid degradation of

21

RECOMMENDATION SYSTEM USING DEEP LEARNING

recommendation performance.

Examples of collaborative systems:

Ringo is a user-based CF system which makes recommendations of music albums and artists. In

Ringo, when a user initially enters the system, a list of 125 artists is given to the user to rate

according to how much he likes listening to them. The list is made up of two different sections.

The first session consists of the most often rated artists, and this affords the active user

opportunity to rate artists which others have equally rated, so that there is a level of similarities

between different users’ profiles. The second session is generated upon a random selection of

items from the entire user-item matrix, so that all artists and albums are eventually rated at some

point in the initial rating phases.

GroupLens is a CF system that is based on client/server architecture; the system recommends

Usenet news which is a high volume discussion list service on the Internet. The short lifetime of

Netnews, and the underlying sparsity of the rating matrices are the two main challenges

addressed by this system. Users and Netnews are clustered based on the existing news groups in

the system, and the implicit ratings are computed by measuring the time the users spend reading

Netnews.

Amazon.com is an example of e-commerce recommendation engine that uses scalable item-to-

item collaborative filtering techniques to recommend online products for different users. The

computational algorithm scales independently of the number of users and items within the

database. Amazon.com uses an explicit information collection technique to obtain information

from users. The interface is made up of the following sections, your browsing history, rate these

items, and improve your recommendations and your profile. The system predicts users interest

based on the items he/she has rated. The system then compares the users browsing pattern on the

system and decides the item of interest to recommend to the user. Amazon.com popularized

feature of “people who bought this item also bought these items”. Example of Amazon.com

item-to-item contextual recommendation interface is shown in below figure

22

RECOMMENDATION SYSTEM USING DEEP LEARNING

Algorithms and Mathematical Derivation:

RECOMMENDATION CLASS USING TEST TRAIN DATA:

ALGORITHM FOR POPULARITY BASED RECOMMENDATION

#Class for Popularity based Recommender System model

class popularity_recommender_py():

 def __init__(self):

 self.train_data = None

 self.user_id = None

 self.item_id = None

 self.popularity_recommendations = None

 #Create the popularity based recommender system model

 def create(self, train_data, user_id, item_id):

 self.train_data = train_data

 self.user_id = user_id

 self.item_id = item_id

 #Get a count of user_ids for each unique song as recommendation score

 train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id:

'count'}).reset_index()

 train_data_grouped.rename(columns = {'user_id': 'score'},inplace=True)

23

RECOMMENDATION SYSTEM USING DEEP LEARNING

 #Sort the songs based upon recommendation score

 train_data_sort = train_data_grouped.sort_values(['score', self.item_id], ascending = [0,1])

 #Generate a recommendation rank based upon score

 train_data_sort['Rank'] = train_data_sort['score'].rank(ascending=0, method='first')

 #Get the top 10 recommendations

 self.popularity_recommendations = train_data_sort.head(10)

 #Use the popularity based recommender system model to

 #make recommendations

 def recommend(self, user_id):

 user_recommendations = self.popularity_recommendations

 #Add user_id column for which the recommendations are being generated

 user_recommendations['user_id'] = user_id

 #Bring user_id column to the front

 cols = user_recommendations.columns.tolist()

 cols = cols[-1:] + cols[:-1]

 user_recommendations = user_recommendations[cols]

 return user_recommendations

24

RECOMMENDATION SYSTEM USING DEEP LEARNING

#Class for Item similarity based Recommender System model

class item_similarity_recommender_py():

 def __init__(self):

 self.train_data = None

 self.user_id = None

 self.item_id = None

 self.cooccurence_matrix = None

 self.songs_dict = None

 self.rev_songs_dict = None

 self.item_similarity_recommendations = None

 #Get unique items (songs) corresponding to a given user

 def get_user_items(self, user):

 user_data = self.train_data[self.train_data[self.user_id] == user]

 user_items = list(user_data[self.item_id].unique())

 return user_items

 #Get unique users for a given item (song)

 def get_item_users(self, item):

 item_data = self.train_data[self.train_data[self.item_id] == item]

 item_users = set(item_data[self.user_id].unique())

 return item_users

25

RECOMMENDATION SYSTEM USING DEEP LEARNING

 #Get unique items (songs) in the training data

 def get_all_items_train_data(self):

 all_items = list(self.train_data[self.item_id].unique())

 return all_items

 #Construct cooccurence matrix

 def construct_cooccurence_matrix(self, user_songs, all_songs):

 ####################################

 #Get users for all songs in user_songs.

 ####################################

 user_songs_users = []

 for i in range(0, len(user_songs)):

 user_songs_users.append(self.get_item_users(user_songs[i]))

 ###

 #Initialize the item cooccurence matrix of size

 #len(user_songs) X len(songs)

 ###

 cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float)

 ###

 #Calculate similarity between user songs and all unique songs

26

RECOMMENDATION SYSTEM USING DEEP LEARNING

 #in the training data

 ###

 for i in range(0,len(all_songs)):

 #Calculate unique listeners (users) of song (item) i

 songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]]

 users_i = set(songs_i_data[self.user_id].unique())

 for j in range(0,len(user_songs)):

 #Get unique listeners (users) of song (item) j

 users_j = user_songs_users[j]

 #Calculate intersection of listeners of songs i and j

 users_intersection = users_i.intersection(users_j)

 #Calculate cooccurence_matrix[i,j] as Jaccard Index

 if len(users_intersection) != 0:

 #Calculate union of listeners of songs i and j

 users_union = users_i.union(users_j)

 cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union))

 else:

 cooccurence_matrix[j,i] = 0

27

RECOMMENDATION SYSTEM USING DEEP LEARNING

 return cooccurence_matrix

 #Use the cooccurence matrix to make top recommendations

 def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs):

 print("Non zero values in cooccurence_matrix :%d" %

np.count_nonzero(cooccurence_matrix))

 #Calculate a weighted average of the scores in cooccurence matrix for all user songs.

 user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0])

 user_sim_scores = np.array(user_sim_scores)[0].tolist()

 #Sort the indices of user_sim_scores based upon their value

 #Also maintain the corresponding score

 sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True)

 #Create a dataframe from the following

 columns = ['user_id', 'song', 'score', 'rank']

 #index = np.arange(1) # array of numbers for the number of samples

 df = pandas.DataFrame(columns=columns)

 #Fill the dataframe with top 10 item based recommendations

 rank = 1

 for i in range(0,len(sort_index)):

 if ~np.isnan(sort_index[i][0]) and all_songs[sort_index[i][1]] not in user_songs and rank

<= 10:

28

RECOMMENDATION SYSTEM USING DEEP LEARNING

 df.loc[len(df)]=[user,all_songs[sort_index[i][1]],sort_index[i][0],rank]

 rank = rank+1

 #Handle the case where there are no recommendations

 if df.shape[0] == 0:

 print("The current user has no songs for training the item similarity based

recommendation model.")

 return -1

 else:

 return df

 #Create the item similarity based recommender system model

 def create(self, train_data, user_id, item_id):

 self.train_data = train_data

 self.user_id = user_id

 self.item_id = item_id

 #Use the item similarity based recommender system model to

 #make recommendations

 def recommend(self, user):

 ##

 #A. Get all unique songs for this user

 ##

 user_songs = self.get_user_items(user)

29

RECOMMENDATION SYSTEM USING DEEP LEARNING

 print("No. of unique songs for the user: %d" % len(user_songs))

 ##

 #B. Get all unique items (songs) in the training data

 ##

 all_songs = self.get_all_items_train_data()

 print("no. of unique songs in the training set: %d" % len(all_songs))

 ###

 #C. Construct item cooccurence matrix of size

 #len(user_songs) X len(songs)

 ###

 cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

 ###

 #D. Use the cooccurence matrix to make recommendations

 ###

 df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,

all_songs, user_songs)

 return df_recommendations

 #Get similar items to given items

30

RECOMMENDATION SYSTEM USING DEEP LEARNING

 def get_similar_items(self, item_list):

 user_songs = item_list

 ##

 #B. Get all unique items (songs) in the training data

 ##

 all_songs = self.get_all_items_train_data()

 print("no. of unique songs in the training set: %d" % len(all_songs))

 ###

 #C. Construct item cooccurence matrix of size

 #len(user_songs) X len(songs)

 ###

 cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs)

 ###

 #D. Use the cooccurence matrix to make recommendations

 ###

 user = ""

 df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix,

all_songs, user_songs)

 return df_recommendations

31

RECOMMENDATION SYSTEM USING DEEP LEARNING

EVALUATION OF PRECISION RECALL AND SVD:

ALGORITHM TO EVALUATE PRECISION AND PRECISION RECALL

class precision_recall_calculator():

 def __init__(self, test_data, train_data, pm, is_model):

 self.test_data = test_data

 self.train_data = train_data

 self.user_test_sample = None

 self.model1 = pm

 self.model2 = is_model

 self.ism_training_dict = dict()

 self.pm_training_dict = dict()

 self.test_dict = dict()

 #Method to return random percentage of values from a list

 def remove_percentage(self, list_a, percentage):

 k = int(len(list_a) * percentage)

 random.seed(0)

 indicies = random.sample(range(len(list_a)), k)

 new_list = [list_a[i] for i in indicies]

 return new_list

 #Create a test sample of users for use in calculating precision

32

RECOMMENDATION SYSTEM USING DEEP LEARNING

 #and recall

 def create_user_test_sample(self, percentage):

 #Find users common between training and test set

 users_test_and_training =

list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id'].unique())))

 print("Length of user_test_and_training:%d" % len(users_test_and_training))

 #Take only random user_sample of users for evaluations

 self.users_test_sample = self.remove_percentage(users_test_and_training, percentage)

 print("Length of user sample:%d" % len(self.users_test_sample))

 #Method to generate recommendations for users in the user test sample

 def get_test_sample_recommendations(self):

 #For these test_sample users, get top 10 recommendations from training set

 #self.ism_training_dict = {}

 #self.pm_training_dict = {}

 #self.test_dict = {}

 for user_id in self.users_test_sample:

 #Get items for user_id from item similarity model

 print("Getting recommendations for user:%s" % user_id)

 user_sim_items = self.model2.recommend(user_id)

 self.ism_training_dict[user_id] = list(user_sim_items["song"])

 #Get items for user_id from popularity model

 user_sim_items = self.model1.recommend(user_id)

33

RECOMMENDATION SYSTEM USING DEEP LEARNING

 self.pm_training_dict[user_id] = list(user_sim_items["song"])

 #Get items for user_id from test_data

 test_data_user = self.test_data[self.test_data['user_id'] == user_id]

 self.test_dict[user_id] = set(test_data_user['song'].unique())

 #Method to calculate the precision and recall measures

 def calculate_precision_recall(self):

 #Create cutoff list for precision and recall calculation

 cutoff_list = list(range(1,11))

 #For each distinct cutoff:

 # 1. For each distinct user, calculate precision and recall.

 # 2. Calculate average precision and recall.

 ism_avg_precision_list = []

 ism_avg_recall_list = []

 pm_avg_precision_list = []

 pm_avg_recall_list = []

 num_users_sample = len(self.users_test_sample)

 for N in cutoff_list:

 ism_sum_precision = 0

 ism_sum_recall = 0

 pm_sum_precision = 0

34

RECOMMENDATION SYSTEM USING DEEP LEARNING

 pm_sum_recall = 0

 ism_avg_precision = 0

 ism_avg_recall = 0

 pm_avg_precision = 0

 pm_avg_recall = 0

 for user_id in self.users_test_sample:

 ism_hitset =

self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N]))

 pm_hitset =

self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N]))

 testset = self.test_dict[user_id]

 pm_sum_precision += float(len(pm_hitset))/float(N)

 pm_sum_recall += float(len(pm_hitset))/float(len(testset))

 ism_sum_precision += float(len(ism_hitset))/float(len(testset))

 ism_sum_recall += float(len(ism_hitset))/float(N)

 pm_avg_precision = pm_sum_precision/float(num_users_sample)

 pm_avg_recall = pm_sum_recall/float(num_users_sample)

 ism_avg_precision = ism_sum_precision/float(num_users_sample)

 ism_avg_recall = ism_sum_recall/float(num_users_sample)

 ism_avg_precision_list.append(ism_avg_precision)

 ism_avg_recall_list.append(ism_avg_recall)

35

RECOMMENDATION SYSTEM USING DEEP LEARNING

 pm_avg_precision_list.append(pm_avg_precision)

 pm_avg_recall_list.append(pm_avg_recall)

 return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list,

ism_avg_recall_list)

 #A wrapper method to calculate all the evaluation measures

 def calculate_measures(self, percentage):

 #Create a test sample of users

 self.create_user_test_sample(percentage)

 #Generate recommendations for the test sample users

 self.get_test_sample_recommendations()

 #Calculate precision and recall at different cutoff values

 #for popularity mode (pm) as well as item similarity model (ism)

 return self.calculate_precision_recall()

 #return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list,

ism_avg_recall_list)

36

RECOMMENDATION SYSTEM USING DEEP LEARNING

Code Analysis and Output:

Implementation and Output

37

RECOMMENDATION SYSTEM USING DEEP LEARNING

38

RECOMMENDATION SYSTEM USING DEEP LEARNING

39

RECOMMENDATION SYSTEM USING DEEP LEARNING

40

RECOMMENDATION SYSTEM USING DEEP LEARNING

41

RECOMMENDATION SYSTEM USING DEEP LEARNING

42

RECOMMENDATION SYSTEM USING DEEP LEARNING

43

RECOMMENDATION SYSTEM USING DEEP LEARNING

44

RECOMMENDATION SYSTEM USING DEEP LEARNING

45

RECOMMENDATION SYSTEM USING DEEP LEARNING

Conclusion and Future Scope:

Recommender systems open new opportunities of retrieving personalized information on the

Internet. It also helps to alleviate the problem of information overload which is a very common

phenomenon with information retrieval systems and enables users to have access to products and

services which are not readily available to users on the system. This paper discussed the two

traditional recommendation techniques and highlighted their strengths and challenges with

diverse kind of hybridization strategies used to improve their performances. Various learning

algorithms used in generating recommendation models and evaluation metrics used in measuring

the quality and performance of recommendation algorithms were discussed. This knowledge will

empower researchers and serve as a road map to improve the state of the art recommendation

techniques.

46

RECOMMENDATION SYSTEM USING DEEP LEARNING

References:

[1]

J.A. Konstan, J. Riedl

Recommender systems: from algorithms to user experience

User Model User-Adapt Interact, 22 (2012), pp. 101-123

CrossRefView Record in Scopus

[2]

C. Pan, W. Li

Research paper recommendation with topic analysis

In Computer Design and Applications IEEE, 4 (2010)

pp. V4-264

[3]

Pu P, Chen L, Hu R. A user-centric evaluation framework for recommender systems. In:

Proceedings of the fifth ACM conference on Recommender Systems (RecSys’11), ACM, New

York, NY, USA; 2011. p. 57–164.

[4]

Hu R, Pu P. Potential acceptance issues of personality-ASED recommender systems. In:

Proceedings of ACM conference on recommender systems (RecSys’09), New York City, NY,

USA; October 2009. p. 22–5.

[5]

B. Pathak, R. Garfinkel, R. Gopal, R. Venkatesan, F. Yin

Empirical analysis of the impact of recommender systems on sales

J Manage Inform Syst, 27 (2) (2010), pp. 159-188

47

RECOMMENDATION SYSTEM USING DEEP LEARNING

[6]

Rashid AM, Albert I, Cosley D, Lam SK, McNee SM, Konstan JA et al. Getting to know you:

learning new user preferences in recommender systems. In: Proceedings of the international

conference on intelligent user interfaces; 2002. p. 127–34.

[7]

Schafer JB, Konstan J, Riedl J. Recommender system in e-commerce. In: Proceedings of the 1st

ACM conference on electronic commerce; 1999. p. 158–66.

[8]

P. Resnick, H.R. Varian

Recommender system’s

Commun ACM, 40 (3) (1997), pp. 56-58, 10.1145/245108.24512

[9]

A.M. Acilar, A. Arslan

A collaborative filtering method based on Artificial Immune Network

48

RECOMMENDATION SYSTEM USING DEEP LEARNING

[10]

L.S. Chen, F.H. Hsu, M.C. Chen, Y.C. Hsu

Developing recommender systems with the consideration of product profitability for sellers

Int J Inform Sci, 178 (4) (2008), pp. 1032-1048

[11]

M. Jalali, N. Mustapha, M. Sulaiman, A. Mamay

WEBPUM: a web-based recommendation system to predict user future movement

Exp Syst Applicat, 37 (9) (2010), pp. 6201-6212

[12]

G. Adomavicius, A. Tuzhilin

Toward the next generation of recommender system. A survey of the state-of-the-art and possible

extensions

IEEE Trans Knowl Data Eng, 17 (6) (2005), pp. 734-749

