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Introduction: 
 

The explosive growth in the amount of available digital information and the number of visitors to 

the Internet have created a potential challenge of information overload which hinders timely 

access to items of interest on the Internet. Information retrieval systems, such as Google, 

DevilFinder and Altavista have partially solved this problem but prioritization and 

personalization (where a system maps available content to user’s interests and preferences) of 

information were absent. This has increased the demand for recommender systems more than 

ever before. Recommender systems are information filtering systems that deal with the problem 

of information overload  by filtering vital information fragment out of large amount of 

dynamically generated information according to user’s preferences, interest, or observed 

behavior about item . Recommender system has the ability to predict whether a particular user 

would prefer an item or not based on the user’s profile. 

 

Recommender systems are beneficial to both service providers and users . They reduce 

transaction costs of finding and selecting items in an online shopping environment . 

Recommendation systems have also proved to improve decision making process and quality . In 

e-commerce setting, recommender systems enhance revenues, for the fact that they are effective 

means of selling more products. In scientific libraries, recommender systems support users by 

allowing them to move beyond catalog searches. Therefore, the need to use efficient and accurate 

recommendation techniques within a system that will provide relevant and dependable 

recommendations for users cannot be over-emphasized. 
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Literature Review: 

 Recommender system is defined as a decision making strategy for users under complex 

information environments . Also, recommender system was defined from the perspective of E-

commerce as a tool that helps users search through records of knowledge which is related to 

users’ interest and preference . Recommender system was defined as a means of assisting and 

augmenting the social process of using recommendations of others to make choices when there is 

no sufficient personal knowledge or experience of the alternatives . Recommender systems 

handle the problem of information overload that users normally encounter by providing them 

with personalized, exclusive content and service recommendations. Recently, various approaches 

for building recommendation systems have been developed, which can utilize either 

collaborative filtering, content-based filtering or hybrid filtering . Collaborative filtering 

technique is the most mature and the most commonly implemented. Collaborative filtering 

recommends items by identifying other users with similar taste; it uses their opinion to 

recommend items to the active user. Collaborative recommender systems have been 

implemented in different application areas. GroupLens is a news-based architecture which 

employed collaborative methods in assisting users to locate articles from massive news database 

. Ringo is an online social information filtering system that uses collaborative filtering to build 

users profile based on their ratings on music albums . Amazon uses topic diversification 

algorithms to improve its recommendation . The system uses collaborative filtering method to 

overcome scalability issue by generating a table of similar items offline through the use of item-

to-item matrix. The system then recommends other products which are similar online according 

to the users’ purchase history. On the other hand, content-based techniques match content 

resources to user characteristics. Content-based filtering techniques normally base their 

predictions on user’s information, and they ignore contributions from other users as with the case 

of collaborative techniques . Fab relies heavily on the ratings of different users in order to create 

a training set and it is an example of content-based recommender system. Some other systems 

that use content-based filtering to help users find information on the Internet include Letizia . 

The system makes use of a user interface that assists users in browsing the Internet; it is able to 

track the browsing pattern of a user to predict the pages that they may be interested in. Pazzani et 

al.  designed an intelligent agent that attempts to predict which web pages will interest a user by 

using naive Bayesian classifier. The agent allows a user to provide training instances by rating 

different pages as either hot or cold. Jennings and Higuchi describe a neural network that models 

the interests of a user in a Usenet news environment. 
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Despite the success of these two filtering techniques, several limitations have been identified. 

Some of the problems associated with content-based filtering techniques are limited content 

analysis, overspecialization and sparsity of data . Also, collaborative approaches exhibit cold-

start, sparsity and scalability problems. These problems usually reduce the quality of 

recommendations. In order to mitigate some of the problems identified, Hybrid filtering, which 

combines two or more filtering techniques in different ways in order to increase the accuracy and 

performance of recommender systems has been proposed . These techniques combine two or 

more filtering approaches in order to harness their strengths while leveling out their 

corresponding weaknesses . They can be classified based on their operations into weighted 

hybrid, mixed hybrid, switching hybrid, feature-combination hybrid, cascade hybrid, feature-

augmented hybrid and meta-level hybrid . Collaborative filtering and content-based filtering 

approaches are widely used today by implementing content-based and collaborative techniques 

differently and the results of their prediction later combined or adding the characteristics of 

content-based to collaborative filtering and vice versa. Finally, a general unified model which 

incorporates both content-based and collaborative filtering properties could be developed . The 

problem of sparsity of data and cold-start was addressed by combining the ratings, features and 

demographic information about items in a cascade hybrid recommendation technique in . In 

Ziegler et al. , a hybrid collaborative filtering approach was proposed to exploit bulk taxonomic 

information designed for exacting product classification to address the data sparsity problem of 

CF recommendations, based on the generation of profiles via inference of super-topic score and 

topic diversification. A hybrid recommendation technique is also proposed in Ghazantar and 

Pragel-Benett , and this uses the content-based profile of individual user to find similar users 

which are used to make predictions. In Sarwar et al. , collaborative filtering was combined with 

an information filtering agent. Here, the authors proposed a framework for integrating the 

content-based filtering agents and collaborative filtering. A hybrid recommender algorithm is 

employed by many applications as a result of new user problem of content-based filtering 

techniques and average user problem of collaborative filtering . A simple and straightforward 

method for combining content-based and collaborative filtering was proposed by Cunningham et 

al. . A music recommendation system which combined tagging information, play counts and 

social relations was proposed in Konstas et al. . In order to determine the number of neighbors 

that can be automatically connected on a social platform, Lee and Brusilovsky  embedded social 

information into collaborative filtering algorithm. A Bayesian mixed-effects model that 

integrates user ratings, user and item features in a single unified framework was proposed by 

Condiff et al.. 
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Objective: 
 

On the Internet, where the number of choices is overwhelming, there is need to filter, prioritize 

and efficiently deliver relevant information in order to alleviate the problem of information 

overload, which has created a potential problem to many Internet users. Recommender systems 

solve this problem by searching through large volume of dynamically generated information to 

provide users with personalized content and services. This paper explores the different 

characteristics and potentials of different prediction techniques in recommendation systems in 

order to serve as a compass for research and practice in the field of recommendation systems. 
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 System Design: 
 

Phases of recommendation process 

1. Information collection phase: 

This collects relevant information of users to generate a user profile or model for the prediction 

tasks including user’s attribute, behaviors or content of the resources the user accesses. A 

recommendation agent cannot function accurately until the user profile/model has been well 

constructed. The system needs to know as much as possible from the user in order to provide 

reasonable recommendation right from the onset. Recommender systems rely on different types 

of input such as the most convenient high quality explicit feedback, which includes explicit input 

by users regarding their interest in item or implicit feedback by inferring user preferences 

indirectly through observing user behavior . Hybrid feedback can also be obtained through the 

combination of both explicit and implicit feedback. In E-learning platform, a user profile is a 

collection of personal information associated with a specific user. This information includes 

cognitive skills, intellectual abilities, learning styles, interest, preferences and interaction with 

the system. The user profile is normally used to retrieve the needed information to build up a 

model of the user. Thus, a user profile describes a simple user model. The success of any 

recommendation system depends largely on its ability to represent user’s current interests. 

Accurate models are indispensable for obtaining relevant and accurate recommendations from 

any prediction techniques. 

 

2. Explicit feedback: 

The system normally prompts the user through the system interface to provide ratings for items 

in order to construct and improve his model. The accuracy of recommendation depends on the 

quantity of ratings provided by the user. The only shortcoming of this method is, it requires 

effort from the users and also, users are not always ready to supply enough information. Despite 

the fact that explicit feedback requires more effort from user, it is still seen as providing more 

reliable data, since it does not involve extracting preferences from actions, and it also provides 

transparency into the recommendation process that results in a slightly higher perceived 

recommendation quality and more confidence in the recommendations . 
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3. Implicit feedback: 

The system automatically infers the user’s preferences by monitoring the different actions of 

users such as the history of purchases, navigation history, and time spent on some web pages, 

links followed by the user, content of e-mail and button clicks among others. Implicit feedback 

reduces the burden on users by inferring their user’s preferences from their behavior with the 

system. The method though does not require effort from the user, but it is less accurate. Also, it 

has also been argued that implicit preference data might in actuality be more objective, as there 

is no bias arising from users responding in a socially desirable way  and there are no self-image 

issues or any need for maintaining an image for others . 

 

4. Hybrid feedback: 

The strengths of both implicit and explicit feedback can be combined in a hybrid system in order 

to minimize their weaknesses and get a best performing system. This can be achieved by using 

an implicit data as a check on explicit rating or allowing user to give explicit feedback only when 

he chooses to express explicit interest. 

 

5. Learning phase: 

It applies a learning algorithm to filter and exploit the user’s features from the feedback gathered 

in information collection phase. 

 

6. Prediction/recommendation phase: 

It recommends or predicts what kind of items the user may prefer. This can be made either 

directly based on the dataset collected in information collection phase which could be memory 

based or model based or through the system’s observed activities of the user.  
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Recommendation filtering techniques: 

The use of efficient and accurate recommendation techniques is very important for a system that 

will provide good and useful recommendation to its individual users. This explains the 

importance of understanding the features and potentials of different recommendation techniques. 

Below figure shows the anatomy of different recommendation filtering techniques. 
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1. Content-based filtering: 

Content-based technique is a domain-dependent algorithm and it emphasizes more on the 

analysis of the attributes of items in order to generate predictions. When documents such as web 

pages, publications and news are to be recommended, content-based filtering technique is the 

most successful. In content-based filtering technique, recommendation is made based on the user 

profiles using features extracted from the content of the items the user has evaluated in the past . 

Items that are mostly related to the positively rated items are recommended to the user. CBF uses 

different types of models to find similarity between documents in order to generate meaningful 

recommendations. It could use Vector Space Model such as Term Frequency Inverse Document 

Frequency (TF/IDF) or Probabilistic models such as Naïve Bayes Classifier , Decision Trees  or 

Neural Networks  to model the relationship between different documents within a corpus. These 

techniques make recommendations by learning the underlying model with either statistical 

analysis or machine learning techniques. Content-based filtering technique does not need the 

profile of other users since they do not influence recommendation. Also, if the user profile 

changes, CBF technique still has the potential to adjust its recommendations within a very short 

period of time. The major disadvantage of this technique is the need to have an in-depth 

knowledge and description of the features of the items in the profile. 

 

 Pros and Cons of content-based filtering techniques: 

CB filtering techniques overcome the challenges of CF. They have the ability to recommend new 

items even if there are no ratings provided by users. So even if the database does not contain user 

preferences, recommendation accuracy is not affected. Also, if the user preferences change, it 

has the capacity to adjust its recommendations in a short span of time. They can manage 

situations where different users do not share the same items, but only identical items according to 

their intrinsic features. Users can get recommendations without sharing their profile, and this 

ensures privacy . CBF technique can also provide explanations on how recommendations are 

generated to users. However, the techniques suffer from various problems as discussed in the 

literature . Content based filtering techniques are dependent on items’ metadata. That is, they 

require rich description of items and very well organized user profile before recommendation can 

be made to users. This is called limited content analysis. So, the effectiveness of CBF depends 

on the availability of descriptive data. Content overspecialization  is another serious problem of 

CBF technique. Users are restricted to getting recommendations similar to items already defined 

in their profiles. 
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Examples of content-based filtering systems: 

News Dude  is a personal news system that utilizes synthesized speech to read news stories to 

users. TF-IDF model is used to describe news stories in order to determine the short-term 

recommendations which is then compared with the Cosine Similarity Measure and finally 

supplied to a learning algorithm (NN). CiteSeer is an automatic citation indexing that uses 

various heuristics and machine learning algorithms to process documents. Today, CiteSeer is 

among the largest and widely used research paper repository on the web. 

 

LIBRA  is a content-based book recommendation system that uses information about book 

gathered from the Web. It implements a Naïve Bayes classifier on the information extracted from 

the web to learn a user profile to produce a ranked list of titles based on training examples 

supplied by an individual user. The system is able to provide explanation on any 

recommendations made to users by listing the features that contribute to the highest ratings and 

hence allowing the users to have total confidence on the recommendations provided to users by 

the system. 

 

2. Collaborative filtering: 

Collaborative filtering is a domain-independent prediction technique for content that cannot 

easily and adequately be described by metadata such as movies and music. Collaborative 

filtering technique works by building a database (user-item matrix) of preferences for items by 

users. It then matches users with relevant interest and preferences by calculating similarities 

between their profiles to make recommendations . Such users build a group called neighborhood. 

An user gets recommendations to those items that he has not rated before but that were already 

positively rated by users in his neighborhood. Recommendations that are produced by CF can be 

of either prediction or recommendation. Prediction is a numerical value, Rij, expressing the 

predicted score of item j for the user i, while Recommendation is a list of top N items that the 

user will like the most as shown in below figure. The technique of collaborative filtering can be 

divided into two categories: memory-based and model-based . 
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Fig:3 

 

 

2.1. Memory based techniques: 

The items that were already rated by the user before play a relevant role in searching for a 

neighbor that shares appreciation with him. Once a neighbor of a user is found, different 

algorithms can be used to combine the preferences of neighbors to generate recommendations. 

Due to the effectiveness of these techniques, they have achieved widespread success in real life 

applications. Memory-based CF can be achieved in two ways through user-based and item-based 

techniques. User based collaborative filtering technique calculates similarity between users by 

comparing their ratings on the same item, and it then computes the predicted rating for an item 

by the active user as a weighted average of the ratings of the item by users similar to the active 

user where weights are the similarities of these users with the target item. Item-based filtering 

techniques compute predictions using the similarity between items and not the similarity between 

users. It builds a model of item similarities by retrieving all items rated by an active user from 

the user-item matrix, it determines how similar the retrieved items are to the target item, then it 

selects the k most similar items and their corresponding similarities are also determined. 

Prediction is made by taking a weighted average of the active users rating on the similar items k. 

Several types of similarity measures are used to compute similarity between item/user. The two 

most popular similarity measures are correlation-based and cosine-based. Pearson correlation 

coefficient is used to measure the extent to which two variables linearly relate with each other 

and is defined as 
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From the above equation, 

S(a,u)is the mean rating given by user a while n is the total number of items in the user-item 

space. Also, prediction for an item is made from the weighted combination of the selected 

neighbors’ ratings, which is computed as the weighted deviation from the neighbors’ mean. The 

general prediction formula is 

 

Cosine similarity is different from Pearson-based measure in that it is a vector-space model 

which is based on linear algebra rather that statistical approach. It measures the similarity 

between two n-dimensional vectors based on the angle between them. Cosine-based measure is 

widely used in the fields of information retrieval and texts mining to compare two text 

documents, in this case, documents are represented as vectors of terms. The similarity between 

two items u and v can be defined as  

 

 

Similarity measure is also referred to as similarity metric, and they are methods used to calculate 

the scores that express how similar users or items are to each other. These scores can then be 

used as the foundation of user- or item-based recommendation generation. Depending on the 

context of use, similarity metrics can also be referred to as correlation metrics or distance 

metrics. 
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Fig:4 
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2.2. Model-based techniques: 

This technique employs the previous ratings to learn a model in order to improve the 

performance of Collaborative filtering Technique. The model building process can be done using 

machine learning or data mining techniques. These techniques can quickly recommend a set of 

items for the fact that they use pre-computed model and they have proved to produce 

recommendation results that are similar to neighborhood-based recommender techniques. 

Examples of these techniques include Dimensionality Reduction technique such as Singular 

Value Decomposition (SVD), Matrix Completion Technique, Latent Semantic methods, and 

Regression and Clustering. Model-based techniques analyze the user-item matrix to identify 

relations between items; they use these relations to compare the list of top-N recommendations. 

Model based techniques resolve the sparsity problems associated with recommendation systems. 

The use of learning algorithms has also changed the manner of recommendations from 

recommending what to consume by users to recommending when to actually consume a product. 

It is therefore very important to examine other learning algorithms used in model-based 

recommender systems: 

Association rule: Association rules mining algorithms  extract rules that predict the occurrence 

of an item based on the presence of other items in a transaction. For instance, given a set of 

transactions, where each transaction is a set of items, an association rule applies the form A → B, 

where A and B are two sets of items . Association rules can form a very compact representation 

of preference data that may improve efficiency of storage as well as performance. Also, the 

effectiveness of association rule for uncovering patterns and driving personalized marketing 

decisions has been known for sometimes . However, there is a clear relation between this method 

and the goal of a Recommendation System but they have not become mainstream. 

Clustering: Clustering techniques have been applied in different domains such as, pattern 

recognition, image processing, statistical data analysis and knowledge discovery. Clustering 

algorithm tries to partition a set of data into a set of sub-clusters in order to discover meaningful 

groups that exist within them. Once clusters have been formed, the opinions of other users in a 

cluster can be averaged and used to make recommendations for individual users. A good 

clustering method will produce high quality clusters in which the intra-cluster similarity is high, 

while the inter-cluster similarity is low. In some clustering approaches, a user can have partial 

participation in different clusters, and recommendations are then based on the average across the 

clusters of participation which is weighted by degree of participation. K-means and Self-

Organizing Map (SOM) are the most commonly used among the different clustering methods. K-

means takes an input parameter, and then partitions a set of n items into K clusters . The Self-

Organizing Map (SOM) is a method for an unsupervised learning, based on artificial neurons 

clustering technique. Clustering techniques can be used to reduce the candidate set in 

collaborative-based algorithms. 
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Decision tree: Decision tree is based on the methodology of tree graphs which is constructed by 

analyzing a set of training examples for which the class labels are known. They are then applied 

to classify previously unseen examples. If trained on very high quality data, they have the ability 

to make very accurate predictions. Decision trees are more interpretable than other classifier such 

as Support Vector machine (SVM) and Neural Networks because they combine simple questions 

about data in an understandable manner. Decision trees are also flexible in handling items with 

mixture of real-valued and categorical features as well as items that have some specific missing 

features. 

Artificial Neural network: ANN is a structure of many connected neurons (nodes) which are 

arranged in layers in systematic ways. The connections between neurons have weights associated 

with them depending on the amount of influence one neuron has on another. There are some 

advantages in using neural networks in some special problem situations. For example, due to the 

fact that it contains many neurons and also assigned weight to each connection, an artificial 

neural network is quite robust with respect to noisy and erroneous data sets. ANN has the ability 

of estimating nonlinear functions and capturing complex relationships in data sets also, they can 

be efficient and even operate if part of the network fails. The major disadvantage is that it is hard 

to come up with the ideal network topology for a given problem and once the topology is 

decided this will act as a lower bound for the classification error. 

Link analysis: Link Analysis is the process of building up networks of interconnected objects in 

order to explore pattern and trends. It has presented great potentials in improving the 

accomplishment of web search. Link analysis consists of PageRank and HITS algorithms. Most 

link analysis algorithms handle a web page as a single node in the web graph. 

Regression: Regression analysis is used when two or more variables are thought to be 

systematically connected by a linear relationship. It is a powerful and diversity process for 

analyzing associative relationships between dependent variable and one or more independent 

variables. Uses of regression contain curve fitting, prediction, and testing systematic hypotheses 

about relationships between variables. The curve can be useful to identify a trend within dataset, 

whether it is linear, parabolic, or of some other forms. 

Bayesian Classifiers: They are probabilistic framework for solving classification problems 

which is based on the definition of conditional probability and Bayes theorem. Bayesian 

classifiers  consider each attribute and class label as random variables. Given a record of N 

features (A1, A2, …, AN), the goal of the classifier is to predict class Ck by finding the value of 

Ck that maximizes the posterior probability of the class given the data P(Ck|A1, A2, …, AN) by 

applying Bayes’ theorem, P(Ck|A1, A2, …, AN) ∝ P(A1, A2, …, AN|Ck)P(Ck). The most 

commonly used Bayesian classifier is known as the Naive Bayes Classifier. In order to estimate 

the conditional probability, P(A1, A2, …, AN|Ck), a Naive Bayes Classifier assumes the 

probabilistic independence of the attributes that is, the presence or absence of a particular 

attribute is unrelated to the presence or absence of any other. This assumption leads to P(A1, A2, 
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…, AN|Ck) = P(A1|Ck)P(A2|Ck)… P(AN|Ck). The main benefits of Naive Bayes classifiers are 

that they are robust to isolated noise points and irrelevant attributes, and they handle missing 

values by ignoring the instance during probability estimate calculations. However, the 

independence assumption may not hold for some attributes as they might be correlated. In this 

case, the usual approach is to use Bayesian Networks. Bayesian classifiers may prove practical 

for environments in which knowledge of user preferences changes slowly with respect to the 

time needed to build the model but are not suitable for environments in which users preference 

models must be updated rapidly or frequently. It is also successful in model-based 

recommendation systems because it is often used to derive a model for content-based 

recommendation systems. 

Matrix completion techniques: The essence of matrix completion technique is to predict the 

unknown values within the user-item matrices. Correlation based K-nearest neighbor is one of 

the major techniques employed in collaborative filtering recommendation systems. They depend 

largely on the historical rating data of users on items. Most of the time, the rating matrix is 

always very big and sparse due to the fact that users do not rate most of the items represented 

within the matrix. This problem always leads to the inability of the system to give reliable and 

accurate recommendations to users. Different variations of low rank models have been used in 

practice for matrix completion especially toward application in collaborative filtering . Formally, 

the task of matrix completion technique is to estimate the entries of a matrix, M∈Rm×n , when a 

subset, ΩC{(i,j):1⩽i⩽m,1⩽j⩽n} 

of the new entries is observed, a particular set of low rank matrices,  

M^=UVT , where   U∈Rm×k  and  V∈Rm×k and k≪min(m,n) 

. The most widely used algorithm in practice for recovering M from partially observed matrix 

using low rank assumption is Alternating Least Square (ALS) minimization which involves 

optimizing over U and V in an alternating manner to minimize the square error over observed 

entries while keeping other factors fixed. Candes and Recht  proposed the use of matrix 

completion technique in the Netflix problem as a practical example for the utilization of the 

technique. Keshavan et al. used SVD technique in an OptSpace algorithm to deal with matrix 

completion problem. The result of their experiment showed that SVD is able provide a reliable 

initial estimate for spanning subspace which can be further refined by gradient descent on a 

Grassmannian manifold. Model based techniques solve sparsity problem. The major drawback of 

the techniques is that the model building process is computationally expensive and the capacity 

of memory usage is highly intensive. Also, they do not alleviate the cold-start problem. 

 

Pros and Cons of collaborative filtering techniques: 

Collaborative Filtering has some major advantages over CBF in that it can perform in domains 
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where there is not much content associated with items and where content is difficult for a 

computer system to analyze (such as opinions and ideal). Also, CF technique has the ability to 

provide serendipitous recommendations, which means that it can recommend items that are 

relevant to the user even without the content being in the user’s profile. Despite the success of 

CF techniques, their widespread use has revealed some potential problems such as follows. 

Cold-start problem: 

This refers to a situation where a recommender does not have adequate information about a user 

or an item in order to make relevant predictions. This is one of the major problems that reduce 

the performance of recommendation system. The profile of such new user or item will be empty 

since he has not rated any item; hence, his taste is not known to the system. 

Data sparsity problem: 

This is the problem that occurs as a result of lack of enough information, that is, when only a few 

of the total number of items available in a database are rated by users. This always leads to a 

sparse user-item matrix, inability to locate successful neighbors and finally, the generation of 

weak recommendations. Also, data sparsity always leads to coverage problems, which is the 

percentage of items in the system that recommendations can be made . 

 Scalability: 

This is another problem associated with recommendation algorithms because computation 

normally grows linearly with the number of users and items . A recommendation technique that 

is efficient when the number of dataset is limited may be unable to generate satisfactory number 

of recommendations when the volume of dataset is increased. Thus, it is crucial to apply 

recommendation techniques which are capable of scaling up in a successful manner as the 

number of dataset in a database increases. Methods used for solving scalability problem and 

speeding up recommendation generation are based on Dimensionality reduction techniques, such 

as Singular Value Decomposition (SVD) method, which has the ability to produce reliable and 

efficient recommendations. 

 Synonymy: 

Synonymy is the tendency of very similar items to have different names or entries. Most 

recommender systems find it difficult to make distinction between closely related items such as 

the difference between e.g. baby wear and baby cloth. Collaborative Filtering systems usually 

find no match between the two terms to be able to compute their similarity. Different methods, 

such as automatic term expansion, the construction of a thesaurus, and Singular Value 

Decomposition (SVD), especially Latent Semantic Indexing are capable of solving the 

synonymy problem. The shortcoming of these methods is that some added terms may have 

different meanings from what is intended, which sometimes leads to rapid degradation of 
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recommendation performance. 

Examples of collaborative systems: 

Ringo is a user-based CF system which makes recommendations of music albums and artists. In 

Ringo, when a user initially enters the system, a list of 125 artists is given to the user to rate 

according to how much he likes listening to them. The list is made up of two different sections. 

The first session consists of the most often rated artists, and this affords the active user 

opportunity to rate artists which others have equally rated, so that there is a level of similarities 

between different users’ profiles. The second session is generated upon a random selection of 

items from the entire user-item matrix, so that all artists and albums are eventually rated at some 

point in the initial rating phases. 

GroupLens  is a CF system that is based on client/server architecture; the system recommends 

Usenet news which is a high volume discussion list service on the Internet. The short lifetime of 

Netnews, and the underlying sparsity of the rating matrices are the two main challenges 

addressed by this system. Users and Netnews are clustered based on the existing news groups in 

the system, and the implicit ratings are computed by measuring the time the users spend reading 

Netnews. 

Amazon.com is an example of e-commerce recommendation engine that uses scalable item-to-

item collaborative filtering techniques to recommend online products for different users. The 

computational algorithm scales independently of the number of users and items within the 

database. Amazon.com uses an explicit information collection technique to obtain information 

from users. The interface is made up of the following sections, your browsing history, rate these 

items, and improve your recommendations and your profile. The system predicts users interest 

based on the items he/she has rated. The system then compares the users browsing pattern on the 

system and decides the item of interest to recommend to the user. Amazon.com popularized 

feature of “people who bought this item also bought these items”. Example of Amazon.com 

item-to-item contextual recommendation interface is shown in  below figure 
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Algorithms and Mathematical Derivation: 
 

RECOMMENDATION CLASS USING TEST TRAIN DATA: 

 

ALGORITHM FOR POPULARITY BASED RECOMMENDATION 

#Class for Popularity based Recommender System model 

class popularity_recommender_py(): 

    def __init__(self): 

        self.train_data = None 

        self.user_id = None 

        self.item_id = None 

        self.popularity_recommendations = None 

         

   #Create the popularity based recommender system model 

    def create(self, train_data, user_id, item_id): 

        self.train_data = train_data 

        self.user_id = user_id 

        self.item_id = item_id 

 

    

 

 

 #Get a count of user_ids for each unique song as recommendation score 

        train_data_grouped = train_data.groupby([self.item_id]).agg({self.user_id: 

'count'}).reset_index() 

        train_data_grouped.rename(columns = {'user_id': 'score'},inplace=True) 
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         #Sort the songs based upon recommendation score 

        train_data_sort = train_data_grouped.sort_values(['score', self.item_id], ascending = [0,1]) 

     

        #Generate a recommendation rank based upon score 

        train_data_sort['Rank'] = train_data_sort['score'].rank(ascending=0, method='first') 

         

        #Get the top 10 recommendations 

        self.popularity_recommendations = train_data_sort.head(10) 

 

    #Use the popularity based recommender system model to 

    #make recommendations 

    def recommend(self, user_id):     

        user_recommendations = self.popularity_recommendations 

         

        #Add user_id column for which the recommendations are being generated 

        user_recommendations['user_id'] = user_id 

     

        #Bring user_id column to the front 

        cols = user_recommendations.columns.tolist() 

        cols = cols[-1:] + cols[:-1] 

        user_recommendations = user_recommendations[cols] 

         

        return user_recommendations 
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#Class for Item similarity based Recommender System model 

class item_similarity_recommender_py(): 

    def __init__(self): 

        self.train_data = None 

        self.user_id = None 

        self.item_id = None 

        self.cooccurence_matrix = None 

        self.songs_dict = None 

        self.rev_songs_dict = None 

        self.item_similarity_recommendations = None 

         

    #Get unique items (songs) corresponding to a given user 

    def get_user_items(self, user): 

        user_data = self.train_data[self.train_data[self.user_id] == user] 

        user_items = list(user_data[self.item_id].unique()) 

         

        return user_items 

         

    #Get unique users for a given item (song) 

    def get_item_users(self, item): 

        item_data = self.train_data[self.train_data[self.item_id] == item] 

        item_users = set(item_data[self.user_id].unique()) 

             

        return item_users 
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    #Get unique items (songs) in the training data 

    def get_all_items_train_data(self): 

        all_items = list(self.train_data[self.item_id].unique()) 

             

        return all_items 

         

    #Construct cooccurence matrix 

    def construct_cooccurence_matrix(self, user_songs, all_songs): 

             

        #################################### 

        #Get users for all songs in user_songs. 

        #################################### 

        user_songs_users = [ ]         

        for i in range(0, len(user_songs)): 

            user_songs_users.append(self.get_item_users(user_songs[i])) 

             

        ############################################### 

        #Initialize the item cooccurence matrix of size  

        #len(user_songs) X len(songs) 

        ############################################### 

        cooccurence_matrix = np.matrix(np.zeros(shape=(len(user_songs), len(all_songs))), float) 

            

        ############################################################# 

        #Calculate similarity between user songs and all unique songs 
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        #in the training data 

        ############################################################# 

        for i in range(0,len(all_songs)): 

            #Calculate unique listeners (users) of song (item) i 

            songs_i_data = self.train_data[self.train_data[self.item_id] == all_songs[i]] 

            users_i = set(songs_i_data[self.user_id].unique()) 

             

            for j in range(0,len(user_songs)):        

                     

                #Get unique listeners (users) of song (item) j 

                users_j = user_songs_users[j] 

                     

                #Calculate intersection of listeners of songs i and j 

                users_intersection = users_i.intersection(users_j) 

                 

                #Calculate cooccurence_matrix[i,j] as Jaccard Index 

                if len(users_intersection) != 0: 

                    #Calculate union of listeners of songs i and j 

                    users_union = users_i.union(users_j) 

                     

                    cooccurence_matrix[j,i] = float(len(users_intersection))/float(len(users_union)) 

                else: 

                    cooccurence_matrix[j,i] = 0 

                     

         



 

27 

 

RECOMMENDATION SYSTEM USING DEEP LEARNING 

        return cooccurence_matrix 

 

     

    #Use the cooccurence matrix to make top recommendations 

    def generate_top_recommendations(self, user, cooccurence_matrix, all_songs, user_songs): 

        print("Non zero values in cooccurence_matrix :%d" % 

np.count_nonzero(cooccurence_matrix)) 

         

        #Calculate a weighted average of the scores in cooccurence matrix for all user songs. 

        user_sim_scores = cooccurence_matrix.sum(axis=0)/float(cooccurence_matrix.shape[0]) 

        user_sim_scores = np.array(user_sim_scores)[0].tolist() 

  

        #Sort the indices of user_sim_scores based upon their value 

        #Also maintain the corresponding score 

        sort_index = sorted(((e,i) for i,e in enumerate(list(user_sim_scores))), reverse=True) 

     

        #Create a dataframe from the following 

        columns = ['user_id', 'song', 'score', 'rank'] 

        #index = np.arange(1) # array of numbers for the number of samples 

        df = pandas.DataFrame(columns=columns) 

          

        #Fill the dataframe with top 10 item based recommendations 

        rank = 1  

        for i in range(0,len(sort_index)): 

            if ~np.isnan(sort_index[i][0]) and all_songs[sort_index[i][1]] not in user_songs and rank 

<= 10: 
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                df.loc[len(df)]=[user,all_songs[sort_index[i][1]],sort_index[i][0],rank] 

                rank = rank+1 

         

        #Handle the case where there are no recommendations 

        if df.shape[0] == 0: 

            print("The current user has no songs for training the item similarity based 

recommendation model.") 

            return -1 

        else: 

            return df 

  

    #Create the item similarity based recommender system model 

    def create(self, train_data, user_id, item_id): 

        self.train_data = train_data 

        self.user_id = user_id 

        self.item_id = item_id 

 

    #Use the item similarity based recommender system model to 

    #make recommendations 

    def recommend(self, user): 

         

        ######################################## 

        #A. Get all unique songs for this user 

        ######################################## 

        user_songs = self.get_user_items(user)     
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        print("No. of unique songs for the user: %d" % len(user_songs)) 

         

        ###################################################### 

        #B. Get all unique items (songs) in the training data 

        ###################################################### 

        all_songs = self.get_all_items_train_data() 

         

        print("no. of unique songs in the training set: %d" % len(all_songs)) 

          

        ############################################### 

        #C. Construct item cooccurence matrix of size  

        #len(user_songs) X len(songs) 

        ############################################### 

        cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) 

         

        ####################################################### 

        #D. Use the cooccurence matrix to make recommendations 

        ####################################################### 

        df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, 

all_songs, user_songs) 

                 

        return df_recommendations 

     

    #Get similar items to given items 



 

30 

 

RECOMMENDATION SYSTEM USING DEEP LEARNING 

    def get_similar_items(self, item_list): 

         

        user_songs = item_list 

         

        ###################################################### 

        #B. Get all unique items (songs) in the training data 

        ###################################################### 

        all_songs = self.get_all_items_train_data() 

         

        print("no. of unique songs in the training set: %d" % len(all_songs)) 

          

        ############################################### 

        #C. Construct item cooccurence matrix of size  

        #len(user_songs) X len(songs) 

        ############################################### 

        cooccurence_matrix = self.construct_cooccurence_matrix(user_songs, all_songs) 

         

        ####################################################### 

        #D. Use the cooccurence matrix to make recommendations 

        ####################################################### 

        user = "" 

        df_recommendations = self.generate_top_recommendations(user, cooccurence_matrix, 

all_songs, user_songs) 

          

        return df_recommendations 
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EVALUATION OF PRECISION RECALL AND SVD: 

 

ALGORITHM TO EVALUATE PRECISION AND PRECISION RECALL 

class precision_recall_calculator(): 

     

    def __init__(self, test_data, train_data, pm, is_model): 

        self.test_data = test_data 

        self.train_data = train_data 

        self.user_test_sample = None 

        self.model1 = pm 

        self.model2 = is_model 

         

        self.ism_training_dict = dict() 

        self.pm_training_dict = dict() 

        self.test_dict = dict() 

     

    #Method to return random percentage of values from a list 

    def remove_percentage(self, list_a, percentage): 

        k = int(len(list_a) * percentage) 

        random.seed(0) 

        indicies = random.sample(range(len(list_a)), k) 

        new_list = [list_a[i] for i in indicies] 

     

        return new_list 

     

    #Create a test sample of users for use in calculating precision 
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    #and recall 

    def create_user_test_sample(self, percentage): 

        #Find users common between training and test set 

        users_test_and_training = 

list(set(self.test_data['user_id'].unique()).intersection(set(self.train_data['user_id'].unique()))) 

        print("Length of user_test_and_training:%d" % len(users_test_and_training)) 

 

        #Take only random user_sample of users for evaluations 

        self.users_test_sample = self.remove_percentage(users_test_and_training, percentage) 

 

        print("Length of user sample:%d" % len(self.users_test_sample)) 

         

    #Method to generate recommendations for users in the user test sample 

    def get_test_sample_recommendations(self): 

        #For these test_sample users, get top 10 recommendations from training set 

        #self.ism_training_dict = {} 

        #self.pm_training_dict = {} 

 

        #self.test_dict = {} 

 

        for user_id in self.users_test_sample: 

            #Get items for user_id from item similarity model 

            print("Getting recommendations for user:%s" % user_id) 

            user_sim_items = self.model2.recommend(user_id) 

            self.ism_training_dict[user_id] = list(user_sim_items["song"]) 

     

            #Get items for user_id from popularity model 

            user_sim_items = self.model1.recommend(user_id) 
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            self.pm_training_dict[user_id] = list(user_sim_items["song"]) 

     

            #Get items for user_id from test_data 

            test_data_user = self.test_data[self.test_data['user_id'] == user_id] 

            self.test_dict[user_id] = set(test_data_user['song'].unique() ) 

     

    #Method to calculate the precision and recall measures 

    def calculate_precision_recall(self): 

        #Create cutoff list for precision and recall calculation 

        cutoff_list = list(range(1,11)) 

 

 

        #For each distinct cutoff: 

        #    1. For each distinct user, calculate precision and recall. 

        #    2. Calculate average precision and recall. 

 

        ism_avg_precision_list = [] 

        ism_avg_recall_list = [] 

        pm_avg_precision_list = [] 

        pm_avg_recall_list = [] 

 

 

        num_users_sample = len(self.users_test_sample) 

        for N in cutoff_list: 

            ism_sum_precision = 0 

            ism_sum_recall = 0 

            pm_sum_precision = 0 
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            pm_sum_recall = 0 

            ism_avg_precision = 0 

            ism_avg_recall = 0 

            pm_avg_precision = 0 

            pm_avg_recall = 0 

 

            for user_id in self.users_test_sample: 

                ism_hitset = 

self.test_dict[user_id].intersection(set(self.ism_training_dict[user_id][0:N])) 

                pm_hitset = 

self.test_dict[user_id].intersection(set(self.pm_training_dict[user_id][0:N])) 

                testset = self.test_dict[user_id] 

         

                pm_sum_precision += float(len(pm_hitset))/float(N) 

                pm_sum_recall += float(len(pm_hitset))/float(len(testset)) 

 

                ism_sum_precision += float(len(ism_hitset))/float(len(testset)) 

                ism_sum_recall += float(len(ism_hitset))/float(N) 

         

            pm_avg_precision = pm_sum_precision/float(num_users_sample) 

            pm_avg_recall = pm_sum_recall/float(num_users_sample) 

     

            ism_avg_precision = ism_sum_precision/float(num_users_sample) 

            ism_avg_recall = ism_sum_recall/float(num_users_sample) 

 

            ism_avg_precision_list.append(ism_avg_precision) 

            ism_avg_recall_list.append(ism_avg_recall) 
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            pm_avg_precision_list.append(pm_avg_precision) 

            pm_avg_recall_list.append(pm_avg_recall) 

             

        return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, 

ism_avg_recall_list) 

      

 

    #A wrapper method to calculate all the evaluation measures 

    def calculate_measures(self, percentage): 

        #Create a test sample of users 

        self.create_user_test_sample(percentage) 

         

        #Generate recommendations for the test sample users 

        self.get_test_sample_recommendations() 

         

        #Calculate precision and recall at different cutoff values 

        #for popularity mode (pm) as well as item similarity model (ism) 

         

        return self.calculate_precision_recall() 

        #return (pm_avg_precision_list, pm_avg_recall_list, ism_avg_precision_list, 

ism_avg_recall_list)     

 

 

 

 

 

 

 



 

36 

 

RECOMMENDATION SYSTEM USING DEEP LEARNING 

Code Analysis and Output: 

Implementation and Output 
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Conclusion and Future Scope: 

Recommender systems open new opportunities of retrieving personalized information on the 

Internet. It also helps to alleviate the problem of information overload which is a very common 

phenomenon with information retrieval systems and enables users to have access to products and 

services which are not readily available to users on the system. This paper discussed the two 

traditional recommendation techniques and highlighted their strengths and challenges with 

diverse kind of hybridization strategies used to improve their performances. Various learning 

algorithms used in generating recommendation models and evaluation metrics used in measuring 

the quality and performance of recommendation algorithms were discussed. This knowledge will 

empower researchers and serve as a road map to improve the state of the art recommendation 

techniques. 
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