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Introduction: 

 

Real-world networks evolve over time as new nodes and links are added. Link prediction 

algorithms use historical data in order to predict the appearance of a new links in the network 

or to identify links which may exist but are not represented in the data. The application of 

link prediction is most commonly seen in recommendation engines, such as new connections 

on social networks or related products on shopping sites. Traditional approaches involve the 

calculation of a heuristic similarity score for a pair of nodes, such as the number of common 

neighbours or the shortest path length connecting the nodes, where pairs of nodes with the 

highest similarity scores are considered the most likely edges.  

 

Link prediction is an important task for analyzing social networks which also has applications 

in other domains like, information retrieval, bio-informatics and e-commerce. There exist a 

variety of techniques for link prediction, ranging from feature-based classification and kernel 

based method to matrix factorization and probabilistic graphical models. These methods 

differ from each other with respect to model complexity, prediction performance, scalability, 

and generalization ability. Link prediction aims to uncover the underlying relationship behind 

networks, which could be utilized to predict missing edges or identify the spurious edges. The 

key issue of link prediction is to estimate the likelihood of potential links in networks. Most 

classical static-structure based methods ignore the temporal aspects of networks, limited by 

the time-varying features. Such approaches perform poorly in evolving networks. 

 

One could apply Link Prediction algorithms to virtually any domain that can be represented 

as a graph without supervision. The complexity of achieving good performance on the LP 

task increases with the graph size, as does the problems at faithfully evaluating performance. 

When a graph grows linearly in vertices, the number of possible links within the graph grows 

quadratically. This defines a needle in a haystack context where relevant or useful predictions 

are a tiny fraction of all predictions. Keeping a good precision in this type of problem turns 

out to be very difficult, as the smallest false positive acceptance rate will amount to huge 

absolute number of wrongfully predicted edges (i.e. false positives). But in parallel, 

estimating the quality and applicability of results also becomes particularly difficult. 

 

Review of Literature 

 

There has been a lot of work done in the field of link prediction with pretty interesting results 

over different datasets. It has been one of the most worked topic since quite a time and has 

been successfully gathering a lot of attention. The popularization of graph-based data sets 

(i.e., networks) in the early 21 century motivated research on a new family of machine 

learning methods. Link prediction problem can be described as a inference of predicting 

future links/edges of a graph based on present links. So, it is a process extracting knowledge 

from the present network and deploying them for future exploration [1]. Therefore, link 

prediction in networks such as the World Wide Web, where the network dynamics evolves 

overtime, would be prized. These kinds of networks as described by Li et al. [2] are known as 
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Dynamic Networks. Link prediction has a wide variety of applications from 

Recommendation Systems, Social Networks to biological data analysis in Molecular 

Interactions (MI), Protein-Protein Interactions (PPI) and Drug- Target Interactions (DTI). 

Mainly there are two approaches to solve the link prediction problem; (i) collecting the 

features from graph topology information [3] and (ii) extracting the individual feature of 

nodes. 

 

It was proposed to use neural networks to map sequences to sequences [4] [5] [6] .This 

framework has been used for neural machine translation and achieves improvements on the 

English-French and English-German translation tasks from the WMT’14 dataset [7]. It has 

also been used for other tasks such as parsing [8] and image captioning [9]. Since it is well 

known that vanilla RNNs suffer from vanishing gradients, most researchers use variants of 

the Long Short Term Memory (LSTM) recurrent neural network [10]. Kalchbrenner and 

Blunsom [4] were the first to map the input sentence into a vector and then back to a 

sentence, although they map sentences to vectors using convolutional neural networks, which 

lose the ordering of the words. Similarly to this work, Cho et al. [5] used LSTM-like RNN 

architecture to map sentences into vectors and back, although their primary focus was on 

integrating their neural network into an SMT system. Bahdanau et al. [2] also attempted 

direct translations with a neural network that used an attention mechanism to overcome the 

poor performance on long sentences experienced by Cho et al. [11] and achieved encouraging 

results. Likewise, Pouget-Abadie et al. [12] attempted to address the memory problem of Cho 

et al. [11] by translating pieces of the source sentence in way that produces smooth 

translations, which is similar to a phrase-based approach. End-to-end training is also the 

focus of Hermann et al. [13], whose model represents the inputs and outputs by feed forward 

networks, and map them to similar points in space. However, their approach cannot generate 

translations directly: to get a translation, they need to do a look up for closest vector in the 

pre-computed database of sentences, or to rescore a sentence. 

 

Objective of the Project 

 

Given a large graph data containing known links/edges between the nodes/vertices, our 

objective is to learn the function by which the nodes have established a relationship with 

other nodes. The learned function can then be implemented to establish probable links among 

the unknown pair of nodes. 
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System Design 
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Methodology for implementation (Formulation/Algorithm) 

 

Here we convert the paired nodes into paired and fixed-length vectors and pass it through a 

binary classifier to learn the interaction between them.  

The input node is converted into a vector of dimensions having maximum existing nodes in 

the graph using one-hot encoding. The following LSTM encoder converts the vectors into a 

fixed given length vectors. The hidden states and the cell states of the encoder is calculated. 

The calculated states are used as context for the decoder LSTM to reproduce the output node 

which is given as input for the decoder. The output sequence from the decoder is fed into a 

dense layer activated by a softmax function having classes equal to maximum number of 

nodes existing in the graph. After training the model on the dataset, we now have updated 

hidden and cell states of both the encoder and the decoder as well. 

To generate the required embedding for each node we are using the updated weight matrix of 

the nodes from the decoder as it is closest to the output. This weight matrix is preset in a 

separate LSTM cell having the inputs as square matrix of the form n*n, where n = maximum 

number of nodes existing in the graph, which means all the nodes are passed as one-hot 

encoding into the LSTM cell. Now, based on the preset weight matrix, we made the 

prediction with LSTM having a fixed dimension. The output sequence given by the LSTM 

cell is treated as our required embedding which is further fed as the input for the 

corresponding nodes into the classifier which determines whether a link exists between a pair 

of nodes or not. 

 

 

Implementation Details 

 

About LSTM: 

 

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of 

RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & 

Schmidhuber (1997), and were refined and popularized by many people in following work. 

They work tremendously well on a large variety of problems, and are now widely used. 

 

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering 

information for long periods of time is practically their default behaviour, not something they 

struggle to learn! 

 

All recurrent neural networks have the form of a chain of repeating modules of neural 

network. In standard RNNs, this repeating module will have a very simple structure, such as a 

single tanh layer. 
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At a first sight, this looks intimidating. Let’s ignore the internals, but only look at the inputs 

and outputs of the unit. The network takes three inputs. X_t is the input of the current time 

step. H_t-1 is the output from the previous LSTM unit and C_t-1 is the “memory” of the 

previous unit, which I think is the most important input. As for outputs, h_t is the output of 

the current network. C_t is the memory of the current unit. 

Therefore, this single unit makes decision by considering the current input, previous output 

and previous memory. And it generates a new output and alters its memory. 

 
The way its internal memory C_t changes are pretty similar to piping water through a pipe. 

Assuming the memory is water, it flows into a pipe. You want to change this memory flow 

along the way and this change is controlled by two valves. 
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The second valve is the new memory valve. New memory will come in through a T shaped 

joint like above and merge with the old memory. Exactly how much new memory should 

come in is controlled by the second valve. 

 
On the LSTM diagram, the top “pipe” is the memory pipe. The input is the old memory (a 

vector). The first cross ✖ it passes through is the forget valve. It is actually an element-wise 

multiplication operation. So if you multiply the old memory C_t-1 with a vector that is close 

to 0, that means you want to forget most of the old memory. You let the old memory goes 

through, if your forget valve equals 1. 

 

Then the second operation the memory flow will go through is this + operator. This operator 

means piece-wise summation. It resembles the T shape joint pipe. New memory and the old 

memory will merge by this operation. How much new memory should be added to the old 

memory is controlled by another valve, the ✖ below the + sign. 

 

After these two operations, you have the old memory C_t-1 changed to the new memory C_t. 
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Now let’s look at the valves. The first one is called the forget valve. It is controlled by a 

simple one layer neural network. The inputs of the neural network is h_t-1, the output of the 

previous LSTM block, X_t, the input for the current LSTM block, C_t-1, the memory of the 

previous block and finally a bias vector b_0. This neural network has a sigmoid function as 

activation, and its output vector is the forget valve, which will applied to the old memory 

C_t-1 by element-wise multiplication. 

 
Now the second valve is called the new memory valve. Again, it is a one layer simple neural 

network that takes the same inputs as the forget valve. This valve controls how much the new 

memory should influence the old memory. 
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The new memory itself however is generated by another neural network. It is also a one layer 

network, but uses tanh as the activation function. The output of this network will element-

wise multiple the new memory valves, and adds to the old memory to form the new memory. 

 

These two ✖ signs are the forget valve and the new memory valve. 

 
And finally, we need to generate the output for this LSTM unit. This step has an output valve 

that is controlled by the new memory, the previous output h_t-1, the input X_t and a bias 

vector. This valve controls how much new memory should output to the next LSTM unit. 
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Model 

 

We have designed an encoder-decoder model for the purpose of generating an embedding 

vector of the input and use the same as a context for the output. After training the model on 

the complete dataset, we extract the features of the nodes i.e., the embedding vector of the 

nodes. The extracted features of the nodes are used to represent the nodes themselves in 

another similar type of model used as a binary classifier. 

 

Formulae and Data flow 

The following are the formulae on which LSTMs works. 

 

 

 
So this is how an LSTM calculates and updates its weight matrix, hidden states and cell 

states. 

The decoder LSTM is followed by a softmax function which is as follows, 

 
 

Now we can move to the flow of data inside our algorithm. At first we are sampling the graph 

data on the basis of DFS (Depth First Search) which extracts the pairs on the basis of nearest 

neighbours topology and getting the links as sources and destinations. Now for the 

embedding generation model, the training is done as a neural machine translation from the 

source node to destination node and vice-versa, to make sure that if one node leads to a 

particular node, then the reverse is also true. After this training, the embedding for the nodes 

are generated by a simple LSTM layer set by the weights of the decoder LSTM after the 

model is trained. The one-hot encoded input of all the nodes are then fed into the LSTM 

mentioned just now and the output is to be treated as the embedding for the nodes. The 

embedding for the nodes now represent the nodes themselves for the classifier which is again 

based encoder-decoder algorithm in which the two nodes of a pair and treated as the two 

inputs of the model and the output is either 0 or 1. As said earlier the nodes are now 
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represented by their embedding that is generated by the previous translation model. Now 

these embedding of the nodes are fed into the classifier model as inputs to both encoder and 

decoder. The model learns the embedding of the nodes instead of the nodes' number and then 

learns the functions for the embedding of two nodes so that they are linked or not linked. 

 

Results 

 

Our results are based on the embedding vectors generated at 300 dimensions for the model 

which generates the vectors and dimension of 100 for the model which classifies the pair as 

linked or not linked. We have tested our algorithm on various datasets namely BlogCatalog, 

PPI, YouTube and HomoSapiens graph data. The results are provided in the table below, 

 

 
 

Conclusion 

 

Hence, after trying many different algorithms, we finally have found that an encoder-decoder 

based algorithm works best for the datasets that we have worked on. The results are 

considerably more accurate and faster than other well known approaches like word2vec and 

node2vec. 
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