
P a g e | 1

Link Prediction On Large Graph Data

By

Sourin Ghatak

Sachin Kumar

Subham Kothari

Subham Karmakar

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

Session 2016-2017

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

[Affiliated to West Bengal University of Technology]

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700015

P a g e | 2

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled Link Prediction on Large Graph Data

prepared under my supervision by Sourin Ghatak (Reg. No. 14117011072, Class Roll No.

CSE/2014/062), Subham Kothari (Reg. No. 141170110079, Class Roll No. CSE/2014/065),

Sachin Kumar (Reg. No. 141170110054, Class Roll No. CSE/2014/086), Subham

Karmakar (Reg. No. 141170110078, Class Roll No. CSE/2014/082) of B.Tech (7th /8th

Semester), may be accepted in partial fulfillment for the degree of Bachelor of Technology

in Computer Science & Engineering under Maulana Abul Kalam Azad University of

Technology (MAKAUT) formely known as WBUT.

..

Project Supervisor

Department of Computer Science and Engineering

RCC Institute of Information Technology

Countersigned:

………………………………………

 Head

 Department of Computer Sc. & Engg,

 RCC Institute of Information Technology

 Kolkata – 700015.

P a g e | 3

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of engineering subject

carried out and presented in a manner satisfactory to warrant its acceptance as a prerequisite

to the degree for which it has been submitted. It is understood that by this approval the

undersigned do not necessarily endorse or approve any statement made, opinion expressed or

conclusion drawn therein, but approve the project only for the purpose for which it is

submitted.

FINAL EXAMINATION FOR 1. —————————————

EVALUATION OF PROJECT

 2. —————————————

 (Signature of Examiners)

P a g e | 4

ACKNOWLEDGEMENT

We would like to express our special thanks of gratitude to our teacher Mr Koushik Mullick,

who gave us the golden opportunity to do this wonderful project on the topic Link Prediction

on Large Graph Data, which also helped us in doing a lot of Research and we came to know

about so many new things. We are really thankful to him.

P a g e | 5

Table of Contents

Contents Page No.

1. Introduction ……………………………………………………................. 6

2. Review of Literature ……………………………………………................ 6

3. Objective of the Project…………………………………………................ 7

4. System Design……………………………………………………............... 8

5. Methodology for implementation (Formulation/Algorithm)…................ 9

6. Implementation Details…………………………………………................ 9

7. Results/Sample output…………………………………………................. 15

8. Conclusion………………………………………………………................. 15

Appendix-: Program Source code with adequate comments.

References

P a g e | 6

Introduction:

Real-world networks evolve over time as new nodes and links are added. Link prediction

algorithms use historical data in order to predict the appearance of a new links in the network

or to identify links which may exist but are not represented in the data. The application of

link prediction is most commonly seen in recommendation engines, such as new connections

on social networks or related products on shopping sites. Traditional approaches involve the

calculation of a heuristic similarity score for a pair of nodes, such as the number of common

neighbours or the shortest path length connecting the nodes, where pairs of nodes with the

highest similarity scores are considered the most likely edges.

Link prediction is an important task for analyzing social networks which also has applications

in other domains like, information retrieval, bio-informatics and e-commerce. There exist a

variety of techniques for link prediction, ranging from feature-based classification and kernel

based method to matrix factorization and probabilistic graphical models. These methods

differ from each other with respect to model complexity, prediction performance, scalability,

and generalization ability. Link prediction aims to uncover the underlying relationship behind

networks, which could be utilized to predict missing edges or identify the spurious edges. The

key issue of link prediction is to estimate the likelihood of potential links in networks. Most

classical static-structure based methods ignore the temporal aspects of networks, limited by

the time-varying features. Such approaches perform poorly in evolving networks.

One could apply Link Prediction algorithms to virtually any domain that can be represented

as a graph without supervision. The complexity of achieving good performance on the LP

task increases with the graph size, as does the problems at faithfully evaluating performance.

When a graph grows linearly in vertices, the number of possible links within the graph grows

quadratically. This defines a needle in a haystack context where relevant or useful predictions

are a tiny fraction of all predictions. Keeping a good precision in this type of problem turns

out to be very difficult, as the smallest false positive acceptance rate will amount to huge

absolute number of wrongfully predicted edges (i.e. false positives). But in parallel,

estimating the quality and applicability of results also becomes particularly difficult.

Review of Literature

There has been a lot of work done in the field of link prediction with pretty interesting results

over different datasets. It has been one of the most worked topic since quite a time and has

been successfully gathering a lot of attention. The popularization of graph-based data sets

(i.e., networks) in the early 21 century motivated research on a new family of machine

learning methods. Link prediction problem can be described as a inference of predicting

future links/edges of a graph based on present links. So, it is a process extracting knowledge

from the present network and deploying them for future exploration [1]. Therefore, link

prediction in networks such as the World Wide Web, where the network dynamics evolves

overtime, would be prized. These kinds of networks as described by Li et al. [2] are known as

P a g e | 7

Dynamic Networks. Link prediction has a wide variety of applications from

Recommendation Systems, Social Networks to biological data analysis in Molecular

Interactions (MI), Protein-Protein Interactions (PPI) and Drug- Target Interactions (DTI).

Mainly there are two approaches to solve the link prediction problem; (i) collecting the

features from graph topology information [3] and (ii) extracting the individual feature of

nodes.

It was proposed to use neural networks to map sequences to sequences [4] [5] [6] .This

framework has been used for neural machine translation and achieves improvements on the

English-French and English-German translation tasks from the WMT’14 dataset [7]. It has

also been used for other tasks such as parsing [8] and image captioning [9]. Since it is well

known that vanilla RNNs suffer from vanishing gradients, most researchers use variants of

the Long Short Term Memory (LSTM) recurrent neural network [10]. Kalchbrenner and

Blunsom [4] were the first to map the input sentence into a vector and then back to a

sentence, although they map sentences to vectors using convolutional neural networks, which

lose the ordering of the words. Similarly to this work, Cho et al. [5] used LSTM-like RNN

architecture to map sentences into vectors and back, although their primary focus was on

integrating their neural network into an SMT system. Bahdanau et al. [2] also attempted

direct translations with a neural network that used an attention mechanism to overcome the

poor performance on long sentences experienced by Cho et al. [11] and achieved encouraging

results. Likewise, Pouget-Abadie et al. [12] attempted to address the memory problem of Cho

et al. [11] by translating pieces of the source sentence in way that produces smooth

translations, which is similar to a phrase-based approach. End-to-end training is also the

focus of Hermann et al. [13], whose model represents the inputs and outputs by feed forward

networks, and map them to similar points in space. However, their approach cannot generate

translations directly: to get a translation, they need to do a look up for closest vector in the

pre-computed database of sentences, or to rescore a sentence.

Objective of the Project

Given a large graph data containing known links/edges between the nodes/vertices, our

objective is to learn the function by which the nodes have established a relationship with

other nodes. The learned function can then be implemented to establish probable links among

the unknown pair of nodes.

P a g e | 8

System Design

P a g e | 9

Methodology for implementation (Formulation/Algorithm)

Here we convert the paired nodes into paired and fixed-length vectors and pass it through a

binary classifier to learn the interaction between them.

The input node is converted into a vector of dimensions having maximum existing nodes in

the graph using one-hot encoding. The following LSTM encoder converts the vectors into a

fixed given length vectors. The hidden states and the cell states of the encoder is calculated.

The calculated states are used as context for the decoder LSTM to reproduce the output node

which is given as input for the decoder. The output sequence from the decoder is fed into a

dense layer activated by a softmax function having classes equal to maximum number of

nodes existing in the graph. After training the model on the dataset, we now have updated

hidden and cell states of both the encoder and the decoder as well.

To generate the required embedding for each node we are using the updated weight matrix of

the nodes from the decoder as it is closest to the output. This weight matrix is preset in a

separate LSTM cell having the inputs as square matrix of the form n*n, where n = maximum

number of nodes existing in the graph, which means all the nodes are passed as one-hot

encoding into the LSTM cell. Now, based on the preset weight matrix, we made the

prediction with LSTM having a fixed dimension. The output sequence given by the LSTM

cell is treated as our required embedding which is further fed as the input for the

corresponding nodes into the classifier which determines whether a link exists between a pair

of nodes or not.

Implementation Details

About LSTM:

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of

RNN, capable of learning long-term dependencies. They were introduced by Hochreiter &

Schmidhuber (1997), and were refined and popularized by many people in following work.

They work tremendously well on a large variety of problems, and are now widely used.

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering

information for long periods of time is practically their default behaviour, not something they

struggle to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural

network. In standard RNNs, this repeating module will have a very simple structure, such as a

single tanh layer.

P a g e | 10

At a first sight, this looks intimidating. Let’s ignore the internals, but only look at the inputs

and outputs of the unit. The network takes three inputs. X_t is the input of the current time

step. H_t-1 is the output from the previous LSTM unit and C_t-1 is the “memory” of the

previous unit, which I think is the most important input. As for outputs, h_t is the output of

the current network. C_t is the memory of the current unit.

Therefore, this single unit makes decision by considering the current input, previous output

and previous memory. And it generates a new output and alters its memory.

The way its internal memory C_t changes are pretty similar to piping water through a pipe.

Assuming the memory is water, it flows into a pipe. You want to change this memory flow

along the way and this change is controlled by two valves.

P a g e | 11

The second valve is the new memory valve. New memory will come in through a T shaped

joint like above and merge with the old memory. Exactly how much new memory should

come in is controlled by the second valve.

On the LSTM diagram, the top “pipe” is the memory pipe. The input is the old memory (a

vector). The first cross ✖ it passes through is the forget valve. It is actually an element-wise

multiplication operation. So if you multiply the old memory C_t-1 with a vector that is close

to 0, that means you want to forget most of the old memory. You let the old memory goes

through, if your forget valve equals 1.

Then the second operation the memory flow will go through is this + operator. This operator

means piece-wise summation. It resembles the T shape joint pipe. New memory and the old

memory will merge by this operation. How much new memory should be added to the old

memory is controlled by another valve, the ✖ below the + sign.

After these two operations, you have the old memory C_t-1 changed to the new memory C_t.

P a g e | 12

Now let’s look at the valves. The first one is called the forget valve. It is controlled by a

simple one layer neural network. The inputs of the neural network is h_t-1, the output of the

previous LSTM block, X_t, the input for the current LSTM block, C_t-1, the memory of the

previous block and finally a bias vector b_0. This neural network has a sigmoid function as

activation, and its output vector is the forget valve, which will applied to the old memory

C_t-1 by element-wise multiplication.

Now the second valve is called the new memory valve. Again, it is a one layer simple neural

network that takes the same inputs as the forget valve. This valve controls how much the new

memory should influence the old memory.

P a g e | 13

The new memory itself however is generated by another neural network. It is also a one layer

network, but uses tanh as the activation function. The output of this network will element-

wise multiple the new memory valves, and adds to the old memory to form the new memory.

These two ✖ signs are the forget valve and the new memory valve.

And finally, we need to generate the output for this LSTM unit. This step has an output valve

that is controlled by the new memory, the previous output h_t-1, the input X_t and a bias

vector. This valve controls how much new memory should output to the next LSTM unit.

P a g e | 14

Model

We have designed an encoder-decoder model for the purpose of generating an embedding

vector of the input and use the same as a context for the output. After training the model on

the complete dataset, we extract the features of the nodes i.e., the embedding vector of the

nodes. The extracted features of the nodes are used to represent the nodes themselves in

another similar type of model used as a binary classifier.

Formulae and Data flow

The following are the formulae on which LSTMs works.

So this is how an LSTM calculates and updates its weight matrix, hidden states and cell

states.

The decoder LSTM is followed by a softmax function which is as follows,

Now we can move to the flow of data inside our algorithm. At first we are sampling the graph

data on the basis of DFS (Depth First Search) which extracts the pairs on the basis of nearest

neighbours topology and getting the links as sources and destinations. Now for the

embedding generation model, the training is done as a neural machine translation from the

source node to destination node and vice-versa, to make sure that if one node leads to a

particular node, then the reverse is also true. After this training, the embedding for the nodes

are generated by a simple LSTM layer set by the weights of the decoder LSTM after the

model is trained. The one-hot encoded input of all the nodes are then fed into the LSTM

mentioned just now and the output is to be treated as the embedding for the nodes. The

embedding for the nodes now represent the nodes themselves for the classifier which is again

based encoder-decoder algorithm in which the two nodes of a pair and treated as the two

inputs of the model and the output is either 0 or 1. As said earlier the nodes are now

P a g e | 15

represented by their embedding that is generated by the previous translation model. Now

these embedding of the nodes are fed into the classifier model as inputs to both encoder and

decoder. The model learns the embedding of the nodes instead of the nodes' number and then

learns the functions for the embedding of two nodes so that they are linked or not linked.

Results

Our results are based on the embedding vectors generated at 300 dimensions for the model

which generates the vectors and dimension of 100 for the model which classifies the pair as

linked or not linked. We have tested our algorithm on various datasets namely BlogCatalog,

PPI, YouTube and HomoSapiens graph data. The results are provided in the table below,

Conclusion

Hence, after trying many different algorithms, we finally have found that an encoder-decoder

based algorithm works best for the datasets that we have worked on. The results are

considerably more accurate and faster than other well known approaches like word2vec and

node2vec.

References

1. D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,”

journal of the Association for Information Science and Technology, vol. 58, no. 7, pp.

1019–1031, 2007.

2. X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang, “A deep learning approach to link

prediction in dynamic networks,” in Proceedings of the 2014 SIAM International

Conference on Data Mining. SIAM, 2014, pp. 289–297.

3. M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici, “Link

prediction in social networks using computationally efficient topological features,” in

Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational

P a g e | 16

Conference on Social Computing (SocialCom), 2011 IEEE Third International

Conference on. IEEE, 2011, pp. 73–80.

4. Kalchbrenner, N. and Blunsom, P. Recurrent continuous translation models. In

EMNLP, 2013.

5. Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473, 2014.

6. Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with neural

networks. In NIPS, 2014.

7. Luong, T., Sutskever, I., Le, Q. V., Vinyals, O., and Zaremba, W. Addressing the rare

word problem in neural machine translation. arXiv preprint arXiv:1410.8206, 2014.

8. Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. Grammar as

a foreign language. arXiv preprint arXiv:1412.7449, 2014a.

9. Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. Show and tell: A neural image

caption generator. arXiv preprint arXiv:1411.4555, 2014b.

10. Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation,

1997.

11. K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using RNN encoder-decoder for statistical machine

translation. In Arxiv preprint arXiv:1406.1078, 2014

12. J. Pouget-Abadie, D. Bahdanau, B. van Merrienboer, K. Cho, and Y. Bengio.

Overcoming the curse of sentence length for neural machine translation using

automatic segmentation. arXiv preprint arXiv:1409.1257, 2014.

13. K. M. Hermann and P. Blunsom. Multilingual distributed representations without

word alignment. In ICLR, 2014.

