
 Page

SARCASM DETECTION ON TWITTER
DATA

By

Soumyabrata Maity

Kumarjit Ghosh

Nishan Singh Sekhon

Rohit Kumar Jaiswal

UNDER THE GUIDANCE OF

Mrs. Sukla Banerjee

PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF INFORMATION TECHNOLOGY AND

ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

Session 2017-2018

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY [Affiliated to West Bengal

University of Technology] CANAL SOUTH ROAD, BELIAGHATA, KOLKATA-700105

 Page

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

TO WHOM IT MAY CONCERN

I hereby recommend that the Project entitled
SARCASM DETECTION ON TWITTER DATA

 prepared under my supervision by

Soumyabrata Maity (Reg. No 141170110070, Class Roll No. CSE/2014/066)

Kumarjit Ghosh (Reg. No 141170110038, Class Roll No. CSE/2014/070)

Nishan Singh Sekhon (Reg. No 141170110042, Class Roll No. CSE/2014/068)

Rohit Kumar Jaiswal (Reg. No 141170110052, Class Roll No. CSE/2014/061)

 of B.Tech 8
th

 Semester, may be accepted in partial fulfillment for the degree of Bachelor of

Technology in Computer Science & Engineering under Maulana Abdul Kalam Azad

University of Technology (MAKAUT).

…...

Project Supervisor

Department of Computer Science and Engineering

RCC Institute of Information Technology

Countersigned:

…..

Head

Department OF Computer Sc. & Engineering,

RCC Institute of Information Technology

Kolkata- 700105

 Page

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CERTIFICATE OF APPROVAL

The foregoing Project is hereby accepted as a credible study of an engineering

subject carried out and presented in a manner satisfactory to warrant its acceptance

as a prerequisite to the degree for which it has been submitted. It is understood that

by this approval the undersigned do not necessarily endorse or approve any state-

ment made, opinion expressed or conclusion drawn therein, but approve the project

only for the purpose for which it is submitted.

FINAL EXAMINATION FOR 1.

 ...

EVALUATION OF PROJECT 2.

 ...

(Signature of Examiners)

 Page

ACKNOWLEDGEMENT

I take the opportunity to express my profound gratitude and deep regards to

our mentor Mrs. Sukla Banerjee for her exemplary guidance, monitoring and

constant encouragement throughout the course of this project. Her relentless

effort for teaching in the right way and in the correct manner has helped us to

attain a high standard in this aspect.

Also, not to forget the coordinated work of our group and hereby we thank

each other for the successful completion of the documentation.

..

Soumyabrata Maity (CSE/2014/066)

Kumarjit Ghosh (CSE/2014/070)

Nishan Singh Sekhon (CSE/2014/068)

Rohit Kumar Jaiswal (CSE/2014/061)

 Page

Table of Contents

Page No.

1. Introduction..

2. Review of Literature..

3. Objective of the Project..

4. System Design...

5. Methodology for implementation (Formulation/Algorithm) …......................

6. Implementation Details..

7. Results/Sample Output..

8. Conclusion..

Appendix: - Program Source Code with adequate Comments

References

 Page

Introduction

Sarcasm is defined as a cutting, often ironic remark intended to express contempt or ridicule. Sarcasm

detection is the task of correctly labeling the text as ’sarcastic’ or ’non-sarcastic’. It is a challenging task

owing to the lack of intonation and facial expressions in text. Nonetheless humans can still spot a

sarcastic sentiment in the text and reason about what makes it so.

Recognizing sarcasm in text is an important task for Natural Language processing to avoid

misinterpretation of sarcastic statements as literal statements. Accuracy and robustness of NLP models are

often affected by untruthful sentiments that are often of sarcastic nature. Thus, it is important to filter out

noisy data from the training data inputs for various NLP related tasks. For example, a sentence like” So

thrilled to be on call for work the entire weekend!” could be naively classified as a sentence with a high

positive sentiment. However, its actually the negative sentiment that is cleverly implied through sarcasm.

 The use of sarcasm is prevalent across all social media, micro-blogging and e-commerce

platforms. Sarcasm detection is imperative for accurate sentiment analysis and opinion mining. It could

contribute to enhanced automated feedback systems in the context of customer-based sites. Twitter is a

micro-blogging platform extensively used by people to express thoughts, reviews, discussions on current

events and convey information in the form of short texts. The relevant context of the tweets are often

specified with the use of #(hash-tag). Twitter data provides a diverse corpus for sentences which

implicitly contain sarcasm.

We first present a rule-based approach to detect sarcasm expressed due to numbers. Our approach

compares numerical magnitudes with those seen in similar contexts in a training dataset. Since ‘similar

context’ is key here, we consider two variants of our approach in order to match the context. Then we

present Machine learning based approach and its variant that take different features as input for learning.

Further we propose deep learning-based approaches to numerical sarcasm detection on social media that

does not require extensive manual feature engineering. We develop Long-short Term Memory

(LSTM) network which is able to handle sequences of any length and capture long term dependencies.

We compare our approaches with four past works and show an improvement.

 Page

Review of Literature

1. Sarcasm Detection on Twitter by Hao Lyu, M.S.INFO.STDS, The University of Texas at Austin, 2016

SUPERVISOR: Byron Wallace : The Data Processing part is done with the help from this paper

which states, “The raw tweet and contextualizing data are difficult to use: tweets are written in various

languages and length; and each author has a different time zone, which is hard to categorize. I

normalize all tweets and process other data. I remove tweets not written in English, retweets, and

tweets that contain fewer than three words. URLs and user mentions are replaced. The hashtag

#sarcastic and #sarcasm in the Sarcastic tweets are also removed. For the profile data, like time zone, I

use Google geocoder package to map different locations to a similar area. Numbers in Twitter are

displayed in string, e.g., “22K” or “2 Million”, and they need to be converted to numeric type. All the

data are stored into a database and the tweet IDs are used as the unique key for each tweet”.

2. “Having 2 hours to write a paper is fun!”: Detecting Sarcasm in Numerical Portions of Text

Lakshya Kumar, Arpan Somani, Pushpak Bhattacharyya Dept. of Computer Science and

Engineering IIT Bombay, India lakshya,somani,pb@cse.iitb.ac.in : From this paper we have

looked up to the portion in which the neural networks are trained with the LSTM-FF model. We

have applied this model to for both training the dataset as well as on the streaming twitter data to

obtain the required results.

 Page

Objective of the Project

Our primary goal is to analyze weather a tweet is sarcastic or not.

Computational detection of sarcasm has seen attention from the sentiment analysis community
in the past few years. Sarcasm is an interesting problem for sentiment analysis because surface
sentiment of words in a sarcastic text may be different from the implied sentiment. For example, ‘Being
stranded in traffic is the best way to start a week’ is a sarcastic sentence because the surface sentiment
of the word ‘best’ (positive) is different from the implied sentiment of the sentence (negative),
considering remaining portions of the text.

We have proposed an algorithm to understand a sentence or tweet is sarcastic or not. From the dataset we
have acquired we are trying to train our model so that test live streaming tweets from Twitter API to
detect weather they are sarcastic or not. This will result in obtaining accurate sentiment analysis and
opinion mining. It could contribute to enhanced automated feedback systems in the context of customer-
based sites.

System Design

System Requirements:
Hardware Requirement:

 64-bit CPU that supports 64bit virtualization - and of course 64-bit OS is needed

 At least 8GB RAM required (16GB recommended)

 Linux installed.

 Anaconda installed.

 Spyder installed.
 There should have updated version of Python (at least 3.0). Li-braries like Pandas, Keras,

Numpy, Tensorflow, Scikit learn is required.

 Page

System Architecture:

Methodology for Implementation (Formulation & Algorithm)

Machine Learning: Machine learning is a subset of artificial intelligence that provides computers with

the ability to learn without being explicitly programmed. Machine learning focuses on the

development of computer programs, those can teach themselves to grow and change when exposed to

new data.

We consider the prediction problem as a problem of supervised learning problem, where we have to infer

from historical data the possibly nonlinear dependence between the input (past embedding vector) and

the output (future value).

 Page

Text Preprocessing: NLP is a branch of data science that consists of systematic processes for analyzing,

understanding, and deriving information from the text data in a smart and efficient manner. By utilizing NLP and

its components, one can organize the massive chunks of text data, perform numerous automated tasks and solve a

wide range of problems such as – automatic summarization, machine translation, named entity recognition,

relationship extraction, sentiment analysis, speech recognition, and topic segmentation etc.

 Here we have used RE package of python to apply NPL in order to do the following tasks:

1. Removal of new lines and tabs.

2. Removal of punctuations.

3. Separating hash tagged words.

4. Tokenizing the inputs.

5. Replacing emoticons with appropriate texts.

Neural network: For this prediction task we are using Backpropagation Neural Network. A neural

Network is a machine learning algorithm to perform Classification and Regression related task.

We are using logistic sigmoid as activation function for the neural network. A logistic sigmoid function

always outputs between 0 and 1 (both inclusive).

F(x) = 1 / (1 + exp(-x))

The derivative of sigmoid function F'(x) = F(x)(1 – F(x))

Feedforward:- The inputs from the input layer to the hidden layer are multiplied with the respective

weights and then the each hidden node sums up all the inputs it is getting. Then the value is passed

through the activation function and again the values from hidden layer to output layer are multiplied by

respective weights and the output sums up the input it is receiving, then it passes the sum through the

activation again and produces output.

Backpropagation:- The output from the output layer is then compared with the target output. Our goal

with backpropagation is to update each of the weights in the network so that they cause the actual

output to be closer the target output, thereby minimizing the error for each output neuron and the

network as a whole.

 Page

Word Embedding: In very simplistic terms, Word Embeddings are the texts converted into numbers and there

may be different numerical representations of the same text. As it turns out, many Machine Learning algorithms and

almost all Deep Learning Architectures are incapable of processing strings or plain text in their raw form. They

require numbers as inputs to perform any sort of job, be it classification, regression etc. in broad terms. And with the

huge amount of data that is present in the text format, it is imperative to extract knowledge out of it and build

applications. Some real-world applications of text applications are – sentiment analysis of reviews by Amazon etc.,

document or news classification or clustering by Google etc.

Let us now define Word Embeddings formally. A Word Embedding format generally tries to map a word using a

dictionary to a vector.

The different types of word embeddings can be broadly classified into two categories-

1. Frequency based Embedding

2. Prediction based Embedding

We have used Prediction based Embedding to map a word using a dictionary to a vector. One of the prediction-

based techniques is the CBOW technique which we have used to create our word vector.

Continuous Bag of words(CBOW): The way CBOW work is that it tends to predict the probability of a word given a

context. A context may be a single word or a group of words.

Let us first see a diagrammatic representation of the CBOW model.

 Page

The flow is as follows:

1. The input layer and the target, both are one- hot encoded of size [1 X V]. Here V=10 in the above example.

2. There are two sets of weights. one is between the input and the hidden layer and second between hidden

and output layer.

Input-Hidden layer matrix size = [V X N], hidden-Output layer matrix size = [N X V]: Where N is the

number of dimensions we choose to represent our word in. It is arbitrary and a hyper-parameter for a

Neural Network. Also, N is the number of neurons in the hidden layer. Here, N=4.

3. There is a no activation function between any layers. (More specifically, I am referring to linear activation)

4. The input is multiplied by the input-hidden weights and called hidden activation. It is simply the

corresponding row in the input-hidden matrix copied.

5. The hidden input gets multiplied by hidden- output weights and output are calculated.

6. Error between output and target is calculated and propagated back to re-adjust the weights.

7. The weight between the hidden layer and the output layer is taken as the word vector representation of the

word.

For multiple context words, the image of the architecture is as follows:

 Page

Recurring Neural Network(RNN Model): A recurrent neural network (RNN) is a class of artificial neural

network where connections between units form a directed graph along a sequence. This allows it to exhibit dynamic

temporal behavior for a time sequence. Unlike feedforward neural networks, RNNs can use their internal state

(memory) to process sequences of inputs. This makes them applicable to tasks such as unsegmented,

connected handwriting recognition or speech recognition.

The term "recurrent neural network" is used indiscriminately to refer to two broad classes of networks with a similar

general structure, where one is finite impulse and the other is infinite impulse. Both classes of networks exhibit

temporal dynamic behavior. A finite impulse recurrent network is a directed acyclic graph that can be unrolled and

replaced with a strictly feedforward neural network, while an infinite impulse recurrent network is a directed cyclic

graph that cannot be unrolled.

Both finite impulse and infinite impulse recurrent networks can have additional stored state, and the storage can be

under direct control by the neural network. The storage can also be replaced by another network or graph, if that

incorporates time delays or has feedback loops. Such controlled states are referred to as gated state or gated

memory, and are part of Long short-term memories (LSTM) and gated recurrent units.

Long Short-Term Memory(LSTM): Long short-term memory (LSTM) units (or blocks) are a building unit for

layers of a recurrent neural network (RNN). A RNN composed of LSTM units is often called an LSTM network. A

common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The cell is responsible for

"remembering" values over arbitrary time intervals; hence the word "memory" in LSTM. Each of the three gates can

be thought of as a "conventional" artificial neuron, as in a multi-layer (or feedforward) neural network: that is, they

compute an activation (using an activation function) of a weighted sum. Intuitively, they can be thought

as regulators of the flow of values that goes through the connections of the LSTM; hence the denotation "gate".

There are connections between these gates and the cell.

The expression long short-term refers to the fact that LSTM is a model for the short-term memory which can last for

a long period of time. An LSTM is well-suited to classify, process and predict time series given time lags of

unknown size and duration between important events. LSTMs were developed to deal with the exploding

and vanishing gradient problem when training traditional RNNs. Relative insensitivity to gap length gives an

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_networks
https://en.wikipedia.org/wiki/Handwriting_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/Dynamic_system
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Directed_cyclic_graph
https://en.wikipedia.org/wiki/Directed_cyclic_graph
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Activation
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Predict
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

 Page

advantage to LSTM over alternative RNNs, hidden Markov models and other sequence learning methods in

numerous applications.

LSTM For Sequence Classification with Dropout:

Recurrent Neural networks like LSTM generally have the problem of overfitting. Dropout can be applied between

layers using the Dropout Keras layer. We can do this easily by adding new Dropout layers between the Embedding

and LSTM layers and the LSTM and Dense output layers. We can see dropout having the desired impact on training

with a slightly slower trend in convergence and in this case a lower final accuracy. The model could probably use a

few more epochs of training and may achieve a higher skill (try it a see). Alternately, dropout can be applied to the

input and recurrent connections of the memory units with the LSTM precisely and separately. Keras provides this

capability with parameters on the LSTM layer, the dropout for configuring the input dropout and recurrent

dropout for configuring the recurrent dropout.

LSTM-FF Model: RNN have demonstrated the power to capture sequential information in a chain-like neural

network. Standard RNNs becomes unable to learn long-term dependencies as the gap between two-time steps

becomes large. We adopted the standard architecture of LSTM proposed by Hochreiter and Schmidhuber. The

LSTM architecture has a range of repeated modules for each time step as in a standard RNN. At each time step, the

output of the module is controlled by a set of gates in IRd as a function of the old hidden state ht-1 and the input at the

current time step xt: the forget gate ft, the input gate it, and the output gate ot. These gates collectively decide how to

update the current memory cell ct

and the current hidden state ht. We use d to denote the memory dimension in the LSTM and all vectors in this

architecture share the same dimension.

The LSTM transition functions are defined as follows:

https://en.wikipedia.org/wiki/Hidden_Markov_models

 Page

This architecture is shown in the figure below. In order to convert the input tweet T into its matrix representation I,

embedding matrix E is used. This input matrix is given as input to LSTM cell one word at a time. The output from

each time step is stored, on which mean-pooling operation is performed to get the final feature vector of the tweet.

This feature vector is passed to the fully connected layer and model is trained by minimizing binary cross-entropy

error.

 Page

There is an embedding matrix E ∈ IR|V |×d where |V | is the vocabulary size and d is the tweet word

embedding dimension. For the input tweet we obtain an input matrix I ∈ IR|S|×d where |S| is the length of

the tweet including padding, where Ii be the d-dimension vector for i-th word in the tweet in the input

matrix. Let k be the length of the filter, and the vector f ∈ IR|k|×d is a filter for the convolution operation.

For each position p in the input matrix I, there is a window wp of k consecutive words, denoted as:

A filter f convolves with the window vectors (k-grams) at each position in a valid way to generate a

feature map c ∈ IR|S|−k+1 each element cp of the feature map for window vector wp is produced as

follows:

 Page

Mean Pooling: A mean-pool layer compresses by taking the mean activation in a block. If large

activations are balanced by negative activations, the overall compressed activations will look like no

activation at all.

Imagine learning to recognize an 'A' vs 'B' (no variation in A's and in B's pixels). First in a fixed

position in the image. This can be done by a logistic regression (1 neuron): the weights end up being a

template of the difference A - B.

Now what happens if you train to recognize on different locations in the image. You cannot do

this with logistic regression, sweeping over the image (i.e. approximating a convolutional layer with one

filter) and labelling all sweeps of the image A or B as appropriate, because learning from the different

positions interferes - effectively you try to learn the average of A-B as A/B are passed across your filter -

but this is just a blur.

 Page

Implementation Details:

 Page

Model Layout:

Dataset:

Training Dataset: The datasets we have used for training, is being downloaded by us from GitHub. It

contains 40 k tweets for embedding and training. The link is given below:

1. https://raw.githubusercontent.com/AniSkywalker/SarcasmDetection/master/resource/train/Tr

ain_v1.txt

2. https://github.com/AniSkywalker/SarcasmDetection/blob/master/resource/emoji_unicode_na

mes_final.txt

3. https://github.com/AniSkywalker/SarcasmDetection/blob/master/resource/abbreviations.txt

https://raw.githubusercontent.com/AniSkywalker/SarcasmDetection/master/resource/train/Train_v1.txt
https://raw.githubusercontent.com/AniSkywalker/SarcasmDetection/master/resource/train/Train_v1.txt
https://github.com/AniSkywalker/SarcasmDetection/blob/master/resource/emoji_unicode_names_final.txt
https://github.com/AniSkywalker/SarcasmDetection/blob/master/resource/emoji_unicode_names_final.txt
https://github.com/AniSkywalker/SarcasmDetection/blob/master/resource/abbreviations.txt

 Page

Screenshot of the training datasets are as follows:

 Page

Screenshot of the dataset used to convert emoticons to respective text values:

 Page

Screenshots of the dataset containing slang abbreviations and their respective full forms:

 Page

Result:

Weight oh hidden layer which represents embedding matrix for the word2vec model. Each column

represents vector representation of each word in the dictionary.

 Page

Conclusion:

Sarcasm detection is a really fascinating subject. It evaluates diverse feature types for sentiment

extraction including sentiments, words, patterns and n-grams, confirming that each feature type

contributes to the sentiment classification framework. As we have seen that it is feasible to do sarcasm

detection using NLP tools, one quick and easy way to improve this detector is to use a spell corrector

along with, for the tweets. This would help in minimizing the order of dimensions of the dictionary for

the n-gram features and will improve the sentiment analysis operation as well. In the future, these

methods can be applied for automated clustering of sentiment types and sentiment dependency rules and

can be expanded to detect some other non-literal form of sentiments like humor.

In this project we have used a dataset containing around 40,000 tweets to train our model, we have

preprocessed the raw data using NLP. Then creating a dictionary of the words, we have send it for word

embedding, where we trained out neural network using CBOW and also created word2vec matrix. We are

using a twitter API from where we will be getting streaming twitter data and give our prediction weather a

tweet is sarcastic in nature or not. We also used a test dataset to check the accuracy efficiency of our

model. The dataset for testing contained around 2000 tweets. On the testing dataset, after running it in our

model, we have obtained a resultant accuracy of 75%.

 Experiments with both of the manually annotated datasets yield very similar results, even though

the sets are completely independent. This shows that the sets are well annotated and reasonably

representative for sarcasm detection in tweets.

This is the link of our source code for sarcasm detection of twitters data:

https://drive.google.com/open?id=1APXmy29V-zhzSPI26vUSOiFMm3NYh3wV

 Page

References

Keras documentation: www.keras.io

Analytics Vidya: www.analyticsvidhya.com › Deep Learning

“Having 2 hours to write a paper is fun!”: Detecting Sarcasm in Numerical Portions of Text Lakshya

Kumar, Arpan Somani, Pushpak Bhattacharyya, Dept. of Computer Science and Engineering IIT

Bombay, India, lakshya,somani,pb@cse.iitb.ac.in

Tweet Sarcasm: Mechanism of Sarcasm Detection in Twitter Komalpreet Kaur Bindra #1, Asst Prof

Ankita Gupta*2 # Computer Science Department, PEC University of Technology, Chandigarh, India. *

PEC University of Technology, Chandigarh, India

A Large Self-Annotated Corpus for Sarcasm Mikhail Khodak, Nikunj Saunshi, Kiran Vodrahalli

Computer Science Department, Princeton University 35 Olden St., Princeton, New Jersey 08540

{mkhodak,nsaunshi,knv}@cs.princeton.edu

Johan G. Cyrus M. Ræder Automatic Sarcasm Detection in Twitter Messages Master’s Thesis, Spring

2016 Artificial Intelligence Group Department of Computer and Information Science Faculty of

Information Technology, Mathematics and Electrical Engineering

Sarcasm Detection on Twitter by Hao Lyu, B.M.S Report Presented to the Faculty of the Graduate School

of the University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master

of Science in INFORMATION STUDIES

Are you serious? Rhetorical Questions and Sarcasm in Social Media Dialog Shereen Oraby1, Vrindavan

Harrison1, Amita Misra1, Ellen Riloff 2 and Marilyn Walker1 1 University of California, Santa Cruz 2

University of Utah

http://www.keras.io/

