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ABSTRACT 
 

Now a days with the unprecedented growth of science, we can recognize the 

environment someone is belonging to without the physical presence, even without 

the image of the surroundings. It is being possible with the help of sound. 

That is why Acoustic Environment Detection is going to be a great matter of concern in 

case of determination of an environment by means of surrounding sounds or noise. 

Here in this project we have the problem to detect the environment of the test sound such 

that we have to determine in which environment the sound has been captured.  

We have collected twelve sample sounds of twelve different environments and determined 

so by matching the test sound with the previously stored ones. We have firstly used Fast 

Fourier Transform to divide the test signal into several small parts so that the matching can 

be done easily. Then using Multilayer Perceptron Concept we did the matching by creating 

models for each type of sound. Then with the help of Confusion Matrix we have determined 

whether we are getting the desired output or not. 

Thus doing so we have determined the environment using sound. With the use of several 

parameters we have calculated the accuracy, hit rate, misdetection and false alarms of the 

detection. From the Receiver Operating Characteristics curve we have determined these.  

With the help of this project without consuming a huge data the environment can be 

detected easily by using the surrounding sounds. It has a great future prospect in case of 

criminal activity detection and with help of this project we get to know sometimes noise also 

can be a very useful tool for detection.  
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Introduction 

 

 

1.1. Acoustic Environment Detection 

 

1.1.1. Acoustic Environment 

 
The acoustic environment is an important aspect of quality in the experience of 

the natural and cultural environment. 

The emission of sound waves from natural and manmade sources, their 

propagation through the atmosphere, and their detection through auditory or 

other means at a noise sensitive receptor in the ambient environment, 

characterize sound quality. 

 

Acoustic Environment is a valued environmental component (VEC) for the 

environmental impact assessment (EIA). There is also potential for Project 

activities to generate vibration in the immediate vicinity of the Project that, if 

excessive, could be objectionable or cause property damage—thus for the 

purpose of this VEC, the Acoustic Environment also includes Project related 

vibration that could affect nearby human receptors. 

 

3.3.3. Principles of noise 

 
Sound travels at around 344 m/s at 20Âº and is a series of mechanical vibrations 

in a solid, liquid or gas medium Noise is defined as any sound that a listener 

does not wish to hear. 

The concept of noise is difficult as each individual has a different concept of 

unwanted sound and the acceptable level of that sound. 

Noise levels are generally measured as sound pressure levels and reported as 

a decibel level. The decibel (dB) scale is logarithmic.  

All noise that can be measured in an area or neighborhood is the ambient noise 

of that area.  

Ambient noise includes all noise from traffic, people, animals and machinery. 

A variety of noise measurements are made depending on the circumstances:  

Ambient noise, background noise, statistical levels and maximum levels.  
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The level of a noise source is sometimes compared with the background noise 

level.  

The background noise with respect to a particular noise source is the ambient 

noise that is exceeded 90% of the time when noise from the source is excluded. 

A general rule is that if any source of noise exceeds the background by 5dB (A) 

then a nuisance may be created. 

 

 

1.1.3.  The acoustic environment affects our experience 
 

 

Noise – unwanted sound – is becoming an increasingly widespread problem.  
We seek quiet in our leisure time, away from our noisy everyday environment.  

Walks in the forests, picking berries and mushrooms, hunting and fishing, 

skiing, swimming and boating – silence is an important part of the experience.  

Many sounds “form part” of the experience. 

 Birdsong, the rustle of leaves, skis cutting through the crust of snow and the 

many different sounds of water enrich our stay in the countryside. 

 The acoustic environment can affect us without us being aware of it. 

 We can become stressed and suffer high blood pressure because of noise, 

without the noise bothering us. 

 

1.1.4. Silence –Also an acoustic environment  

 
Absolute silence is not always the best acoustic environment. 

 In an acoustic laboratory we may experience a very low level of sound, but 

then the body’s own sounds become almost terrifying. 

 We hear our heart beat and our blood coursing through our arteries and veins. 

The quietest situation we can experience in nature is a winter’s day with no 

wind, far away from buildings and roads.  

There the level of sound can approach the situation in a laboratory.  

But we like to hear nature’s own sounds, the babbling of streams, the rustling 

of leaves or the dripping of melting snow. 

 Nor is silence the only thing we look for in nature. 

 If an area is to be attractive, it has to be able to offer something more than just 

silence. This “something more” is often associated with sound.  

The ski lift, the snow guns, the skiers mean that we hear that we are on a ski 

slope and can enhance the experience for the downhill skier. 

 When we go walking in the mountains, we like to pitch camp alongside water, 

so that we can hear the quiet murmur of the mountain stream or the splashing 

of the waves on the shore of the lake. 
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1.1.5. Our Purpose 

 
The emission of sound waves from natural and manmade sources, their                 

propagation through the atmosphere, and their detection through auditory or 

other means at a noise sensitive receptor in the ambient environment, 

characterize sound quality.  

Here we have selected twelve types of circumstances and classified the test 

signal with help of those. 

The process is described below via the block diagram- 

             

 

 

              

 

 

                                                                                                                                  

 

FIG : 1.1 

 

 
The mic is used as the receiver here. The hardware part is the computer.  

MATLAB is used as the software which generates a flag.  

Based upon the flag the desired output occurs.  

 

 

 

 

 

DECISION MAKING 
MIC 

(Receiver) 
FLAG 

OUTPUT 
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MULTILAYER PERCEPTRON 

 

 

 

2.1.    MULTILAYER PERCEPTRON 
 

A multilayer perceptron (MLP) is a class of feed forward artificial neural 

network. 

 An MLP consists of at least three layers of nodes.  

Except for the input nodes, each node is a neuron that uses a nonlinear 

activation function. 

 MLP utilizes a supervised learning technique called back propagation for 

training. 

 Its multiple layers and non-linear activation distinguish MLP from a linear 

perceptron.  

It can distinguish data that is not linearly separable. 

 

The perceptron, that neural network whose name evokes how the future 

looked from the perspective of the 1950s, is a simple algorithm intended to 

perform binary classification; i.e. it predicts whether input belongs to a certain 

category of interest or not. 

 

Multilayer perceptron is sometimes colloquially referred to as “vanilla” neural 

networks, especially when they have a single hidden layer. 

 

 

 

Machine learning and Data mining 

 

 

 

 

FIG : 2.1(A) 
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The perceptron holds a special place in the history of neural networks and artificial intelligence, 

because the initial hype about its performance led to a rebuttal by Minsky and Papert. 

 The wider spread backlash that cast a pall on neural network research for decades, a neural 

net winter that wholly thawed only with Geoff Hinton’s research in the 2000s, the results of 

which have since swept the machine-learning community. 

 

Frank Rosenblatt, godfather of the perceptron, popularized it as a device rather than an 

algorithm. 

 The perceptron first entered the world as hardware. 

 Rosenblatt, a psychologist who studied and later lectured at Cornell University, received 

funding from the U.S. Office of Naval Research to build a machine that could learn. His machine, 

the Mark I perceptron, looked like this. 

 

 

FIG : 2.1(B) 

                                        

 

Subsequent work with multilayer perceptron has shown that they are capable of 

approximating an XOR operator as well as many other non-linear functions. 

 

Just as Rosenblatt based the perceptron on a McCulloch-Pitts neuron, conceived in 

1943, so too, perceptron themselves are building blocks that only prove to be useful in 

such larger functions as multilayer perceptron. 

 

 

http://web.csulb.edu/~cwallis/artificialn/History.htm
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2.1.1. Activation function 
 

 If a multilayer perceptron has a linear activation function in all neurons, that is, a                                 

linear function that maps the weighted inputs to the output of each neuron, then linear algebra 

shows that any number of layers can be reduced to a two-layer input-output model.  

In MLPs some neurons use a nonlinear activation function that was developed to model the 

frequency of action potentials, or firing, of biological neurons. 

  The two common activation functions are both sigmoid, and are described by-      

    

 

The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function, 

which is similar in shape but ranges from 0 to 1.  

Here   is the output of the nth node (neuron) and   is the weighted sum of the input 

connections.  

Alternative activation functions have been proposed, including the rectifier and soft plus 

functions. 

 More specialized activation functions include radial basis functions (used in radial basis 

networks, another class of supervised neural network models). 

 

            

        2.1.2. Layers 

The MLP consists of three or more layers (an input and an output layer with one or more 

hidden layers) of nonlinearly-activating nodes making it a deep neural network. 

 Since MLPs are fully connected, each node in one layer connects with a certain weight   to 

every node in the following layer. 

 

 

   2.1.3. Learning 

Learning occurs in the perceptron by changing connection weights after each piece of data is 

processed, based on the amount of error in the output compared to the expected result.  
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This is an example of supervised learning, and is carried out through back propagation, a 

generalization of the least mean squares algorithm in the linear perceptron. 

We represent the error in output node j in the nth data point (training example) by 

 

Where d is the target value and y is the value produced by the perceptron.  

The node weights are adjusted based on corrections that minimize the error in the entire 

output, given by 

 

Using gradient descent, the change in each weight is  

 

Where yi the output of the previous neuron and   is the learning rate, which is selected to 

ensure that the weights quickly converge to a response, without oscillations. 

The derivative to be calculated depends on the induced local field vj, which itself varies. It is 

easy to prove that for an output node this derivative can be simplified to  

 

Where ’ is the derivative of the activation function described above, which itself does not 

vary.  

The analysis is more difficult for the change in weights to a hidden node, but it can be shown 

that the relevant derivative is 

 

This depends on the change in weights of the kth nodes, which represent the output layer.  

So to change the hidden layer weights, the output layer weights change according to the 

derivative of the activation function, and so this algorithm represents a back propagation of 

the activation function. 
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    2.2. Terminology 

The term “multilayer perceptron” does not refer to a single perceptron that has multiple 

layers. Rather, it contains many perceptron that are organized into layers. 

 An alternative is “multilayer perceptron network”. Moreover, MLP “perceptron” are not 

perceptron in the strictest possible sense.  

True perceptron are formally a special case of artificial neurons that use a threshold activation 

function such as the Heaviside step function.  

MLP perceptron can employ arbitrary activation functions.  

A true perceptron performs binary classification (either this or that), an MLP neuron is free to 

either perform classification or regression, depending upon its activation function. 

 

The term “multilayer perceptron” later was applied without respect to nature of the 

nodes/layers, which can be composed of arbitrarily defined artificial neurons, and not 

perceptron specifically.  

This interpretation avoids the loosening of the definition of “perceptron” to mean an artificial 

neuron in general. 

 

 

2.3. Applications 

 

MLPs are useful in research for their ability to solve problems stochastically, which 

often allows approximate solutions for extremely complex problems like fitness 

approximation. 

 

MLPs are universal function approximates as showed by Cybenko’s theorem, so they 

can be used to create mathematical models by regression analysis. 

 As classification is a particular case of regression when the response variable is 

categorical, MLPs make good classifier algorithms. 

 

MLPs were a popular machine learning solution in the 1980s, finding applications in 

diverse fields such as speech recognition, image recognition, and machine translation 

software, but thereafter faced strong competition from much simpler support vector 

machines. 

 Interest in back propagation networks returned due to the successes of deep learning. 
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2.4. Diagrammatic Representation 

 

 

 

 
FIG : 2.4 

                                                           

 A multilayer perceptron (MLP) is a class of feed forward artificial neural network. 

 

 An MLP consists of at least three layers of nodes. Except for the input nodes, each node 

is a neuron that uses a nonlinear activation function. 

 

 

 Here we have used 129 sample points as input. 

 

 

 

 The hidden layer contains 5 neurons. 

 

 

 In the output layer there are 12 points. 
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2.5. Feature Matrix 

 

 The matrix used for comparison, consists of 12,000 rows with 129 columns in each as 

it parts the input in 2min format with 10ms partition. 

 

 

2.6. Training Matrix 

 

 The Training matrix used for comparison, consists of 144,000 rows with 129 columns 

in each as it has input in 2min format with 10ms partition. 

 

A multilayer perceptron (MLP) is a deep, artificial neural network. It is composed of 

more than one perceptron.  

They are composed of an input layer to receive the signal, an output layer that makes 

a decision or prediction about the input, and in between those two, an arbitrary 

number of hidden layers that are the true computational engine of the MLP.  

MLPs with one hidden layer are capable of approximating any continuous function. 

 

Multilayer perceptron are often applied to supervised learning problems, they train 

on a set of input-output pairs and learn to model the correlation (or dependencies) 

between those inputs and outputs.  

Training involves adjusting the parameters, or the weights and biases, of the model in 

order to minimize error.  

Back propagation is used to make those weigh and bias adjustments relative to the 

error, and the error itself can be measured in a variety of ways, including by root mean 

squared error (RMSE). 
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CONFUSION MATRIX 

 

3. 1 DEFINITION:   A confusion matrix is a table that is often used to describe the      

performance of a classification model (or “classifier”) on a set of test data for which the true 

values are known. 

In predictive analytics, a table of confusion (sometimes also called a confusion matrix), is a 

table with two rows and two columns that reports the number of false positives, false 

negatives, true positives, and true negatives. This allows more detailed analysis than mere 

proportion of correct classifications (accuracy). Accuracy is not a reliable metric for the real 

performance of a classifier, because it will yield misleading results if the data set is unbalanced 

(that is, when the numbers of observations in different classes vary greatly). 

 

3.2 TERMINOLOGIES RELATED TO CONFUSION MATRIX 

 

CONDITION POSITIVE (P)     The number of real positive cases in the data 

CONDITION NEGATIVE (N)   The number of real negative cases in the data 

TRUE POSITIVE (TP)  Equivalent with hit 

TRUE NEGATIVE (TN)   Equivalent with correct rejection 

FALSE POSITIVE (FP)    Equivalent with false alarm 

FALSE NEGATIVE (FN)    Equivalent with misdetection 
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3.3 SAMPLE CONFUSION MATRIX:  

 

 

Fig : 3.3 

TP  TRUE POSITIVE ;  FN  FALSE NEGATIVE 

 SENSITIVITY:  Sensitivity (also called the true positive rate, the recall, or 

probability of detection in some fields) measures the proportion of positives that are 

correctly identified as such (e.g. the percentage of sick people who are correctly 

identified as having the condition). 

EXPRESSION:  

SENSITIVITY OR TRUE POSITIVE RATE OR HIT RATE (TPR) = TP/ (TP+FN) 

 

 SPECIFICITY:  Specificity (also called the true negative rate) measures the 

proportion of negatives that are correctly identified as such (e.g. the percentage of 

healthy people who are correctly identified as not having the condition). 

EXPRESSION: 

SPECIFICITY OR TRUE NEGATIVE RATE (SPC) = {TN/ (TN+FP)} *100% 
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 POSITIVE PREDICTIVE VALUE (PPV) :  The positive predictive value (PPV) is 

defined as where a “true positive” is the event that the test makes a positive prediction, 

and the subject has a positive result under the gold standard, and a “false positive” is 

the event that the test makes a positive prediction, and the subject has a negative result 

under the gold standard. 

 

EXPRESSION:  

PPV=TP/ (TP+FP) 

 

 NEGATIVE PREDICTIVE  VALUE  (NPV): The negative predictive value is defined 

as where a “true negative” is the event that the test makes a negative prediction, and the 

subject has a negative result under the gold standard, and a “false negative” is the event that 

the test makes a negative prediction, and the subject has a positive result under the gold 

standard. 

 

EXPRESSION: 

NPV = TN/(TN+FN) 

 

 

 FALL-OUT OR FALSE POSITIVE RATE (FPR) :  A false positive ratio (or false 

alarm ratio) is the probability of falsely rejecting the null hypothesis for a 

particular test. The false positive rate is calculated as the ratio between the number of 

negative events wrongly categorized as positive (false positives) and the total number 

of actual negative events (regardless of classification). 

 

EXPRESSION: 

FPR=FP/(FP+TN) 

 

 FALSE NEGATIVE RATE ( FNR) :  A false positive error, or in short a false 

positive, commonly called a “false alarm”, is a result that indicates a given condition 

exists, when it does not. 

EXPRESSION:                                     

FNR={FN/(TP+FN)}*100% 

https://en.wikipedia.org/wiki/True_positive
https://en.wikipedia.org/wiki/False_positive
https://en.wikipedia.org/wiki/True_negative
https://en.wikipedia.org/wiki/False_negative
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Hypothesis_test
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3.4 UTILITY OF CONFUSION MATRIX IN OUR PROJECT 

A Confusion Matrix is a visual performance assessment of a classification algorithm in the 

form of a table layout or matrix. Each column of the matrix represents predicted classifications 

and each row represents actual defined classifications. This representation is a useful way to 

help evaluate a classifier model. A well behaved model should produce a balanced matrix and 

have consist percent correctness numbers for accuracy, recall, precision and an F measure. If 

it does not, there is cause to further evaluate the data used to build the model and the data 

used to test the model. 

              Let us assume a situation where we have to determine the possible probabilities that 

can occur in our practical life. Like a the possible situations can happen while using a 

fingerprint sensor. 

There are 4 possible situations can occur, i.e 

1) If the sensor correctly detects the authorized person and allows him to enter the certain 

room ,this probability is known as TRUE POSITIVE. 

 

2) If the sensor correctly detects the unauthorized person and restrains him to enter the 

certain room , this probability is known as TRUE NEGATIVE. 

 

 

 

3) If the sensor failed to detect the authorized person and restrains him to enter the 

certain room , this type of probable situation is known as FALSE NEGATIVE OR 

MISDETECTION. 

 

 

4) If the sensor incorrectly detects an unauthorized person as an authorized person then 

this type of probable situation is called FALSE POSITIVE OR FALSE ALARM. 
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As many cases of true positive or true negative situations better the hit ratio. 

 

 

 

 
Table : 1 

 

 

Here, 

            The first case is known as TRUE POSITIVE 

 

            The second case is known as TRUE NEGATIVE 

       

            The third case is known as FALSE NEGATIVE 

 

            The fourth case is known as FALSE POSITIVE 
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Let us assume there are 3 classes and the target class is 2 

 

 
                                                 

Fig : 3.4 

 

 

TP   TRUE POSITIVE 

 

FN   FALSE NEGATIVE 

 

FP  FALSE POSITIVE 

 

TN  TRUE NEGATIVE 

 

 

 

 

         Here the TRUE POSITIVE RESULT  (2,2) defines that the system detects the 

signal or input correctly. Better the true positive rate better is the accuracy. 

 

        Next the FALSE NEGATIVE RESULTS  (2,1),(2,3) define that the system failed 

to detect the correct input and treated it as negative. This situation i.e MIS 

DETECTION is not desired in case of of acquiring a better accuracy. 
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    Next the FALSE POSITIVE RESULT (1,2),(3,2) define that the system incorrectly 

detects a wrong input and treated as the desired input. This situation i.e FALSE 

ALARM is also not desired to achieve a better accuracy. 

 

 

 

  Last the TRUE NEGATIVE RESULT  (1,1),(1,3),(3,1),(3,3)  are collectively state that 

the system successfully rejects the undesired inputs. It also helps to achieve a better 

accuracy. 

 

 

 

 

 

ACCURACY= (TP+FN)/ATOTAL 
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4.                  DETAILED ANALYSIS 

4.1 CLASSES OF SOUND ENVIRONMENT USED 

 COCKPIT 1 

 COCKPIT 2 

 COCKPIT 3 

 ENGINE 1 

 ENGINE 2 

 FACTORY 1 

 FACTORY 2  

 MACHINE GUN 

 VOLVO BUS 

 WHITE NOISE 

 CLASSROOM BABEL NOISE 

 HF CHANNEL 

 

4.2 DETAILED EXPLANATION 

The objective of the Acoustic Analytics: Acoustic Event Detection, Classification and Analysis 

research project is to develop key signal processing and analytical tools to extract timely, 

useful, and actionable information from real-world acoustic data on a large scale. Specifically, 

we are aiming to build acoustic analytic systems for 24/7/365 machine-automated monitoring 

of human environments on a large scale. The systems should be general enough, fast enough, 

and robust enough to yield useful information from large volumes of acoustic data. 

Sound is second only to vision as a means by which humans sense and understand the world. 

The severity of deafness as a disability reflects concisely the importance of sound in 

understanding what’s happening in the physical world, including omni-directional and out-

of-sight awareness of events and warning of danger. We thus believe that acoustic sensing, 

sense-making, and analytics of audio data could prove as significant to machine-automated 

monitoring of human environments as it is to the humans. The massive deployment of mobile 

phones and microphones in most personal computing devices has raised the quality and 

driven down the cost of acoustic data acquisition immensely over the past two decades, as 

well as provided the capacity to form and deploy massive, city-wide networked arrays of 

acoustic sensors. Smart-phone technologies enable significant computation for real-time 

point-of-acquisition data analysis. Thus in the past few years, real-time 24/7/365 acoustic 

monitoring on a very large scale has gone from inconceivably expensive to eminently feasible. 

In spite of this potential, acoustic data analysis (other than speech recognition) has been much 

less studied and deployed in comparison with vision. 

Today, acoustic data analytics are based on techniques tailored for specific applications 

(SONAR detection of submarines; automatic speech recognition for specific languages and 

contexts; detection of whale calls of a specific species; gunshot detection) that do not 



29 | P a g e  
 

generalize effectively. These techniques are often very expensive computationally and so are 

unsuitable for 24/7/365 analysis of large volumes of audio data streams. Therefore, advances 

in audio signal processing and acoustical analytics are required to process large volumes of 

audio data to extract timely, useful, and actionable information from the real world. 

Audio-based monitoring also has significant impact on surveillance for public safety and 

security and on urban noise assessment of residential area. Potential safety hazard is raised 

for crowded public areas like drinking bars and the places for recreation and leisure, 

especially during nighttime.  Crimes like robbery also happen in hidden public areas without 

awareness from neighbors. It is crucial to detect such emergency cases in a timely manner and 

alert police for preventing further damage. Audio-based monitoring systems have proven to 

be very useful tools for detecting such cases. It might normally be the case that there is 

shouting/screaming/crying sound from these kinds of incidents. Timely acoustic sensing and 

correctly detecting the anomaly events become very important. 

Likewise, urban noise effects are becoming more and more serious to human health. Traffic, 

business and even recreational activities all contribute to spoiling a city and harming its 

inhabitants by exposing them to undue levels of noise. Noise issues have to be carefully 

analyzed and controlled. Noise mapping and prediction is an essential tool to aid the 

assessment of noise levels over a wide area and to predict the changes in the noise 

environment due to changes in use. Creating an accurate noise map will be very useful in 

communicating issues and defining future policy, such as to communicate the noise situation 

to stakeholders, to inform areas of planning such as construction, traffic & transport and to 

build a common understanding within the community. Towards our vision of developing the 

capability to extract timely, useful, and actionable information from real-world acoustic data 

on a large scale, this project is divided into several major tasks: 

 Acoustic event detection: performing universal acoustic event detection for quickly 

discarding the vast majority of uninteresting data in the  analysis of massive audio 

datasets, and improving essential robustness to adapt to different background noises 

while retaining high sensitivity to detection events; 

 Acoustic event classification: classifying the detected events into different classes 

that are precisely defined for human understanding with improved robustness to 

environmental noise and interference; 

 Anomaly detection: detecting rare or never-before-observed unusual acoustic 

events; 

 Acoustic energy density mapping: monitoring environmental noise levels and 

mapping over space and time the intensity and other parameters of the noise field; 

 Real-time audio analytics: Performing high-level audio analysis to exploit and 

extract the known structure in acoustic data for further data analytics and mining. 
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 Sonification: encoding of non-auditory information into sound for “visualization” 

for increasing the information-delivery capacity and representing certain types of data 

more effectively. 

4.3 FEATURE MATRIX 

In machine learning and pattern recognition, a feature is an individual measurable property 

or characteristic of a phenomenon being observed. Choosing informative, discriminating and 

independent features is a crucial step for effective algorithms in pattern 

recognition, classification and regression. Features are usually numeric, but structural features 

such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" 

is related to that of explanatory variable used in statistical techniques such as linear regression. 

 

4.3 Classification 

A set of numeric features can be conveniently described by a feature vector. An example of 

reaching a two-way classification from a feature vector (related to the perceptron) consists of 

calculating the scalar product between the feature vector and a vector of weights, comparing 

the result with a threshold, and deciding the class based on the comparison. 

Algorithms for classification from a feature vector include nearest neighbor 

classification, neural networks, and statistical techniques such as Bayesian approaches. 

4.3.1 Examples  

In character recognition, features may include histograms counting the number of black pixels 

along horizontal and vertical directions, number of internal holes, stroke detection and many 

others. 

In speech recognition, features for recognizing phonemes can include noise ratios, length of 

sounds, relative power, filter matches and many others. 

In spam detection algorithms, features may include the presence or absence of certain email 

headers, the email structure, the language, the frequency of specific terms, the grammatical 

correctness of the text. 

In computer vision, there are a large number of possible features, such as edges and objects. 

  

 

In pattern recognition and machine learning, a feature vector is an n-dimensional vector of 

numerical features that represent some object. Many algorithms in machine learning require 

a numerical representation of objects, since such representations facilitate processing and 

statistical analysis. When representing images, the feature values might correspond to the 

pixels of an image, while when representing texts the features might be the frequencies of 

occurrence of textual terms. Feature vectors are equivalent to the vectors of explanatory 

variables used in statistical procedures such as linear regression. Feature vectors are often 
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combined with weights using a dot product in order to construct a linear predictor 

function that is used to determine a score for making a prediction. 

The vector space associated with these vectors is often called the feature space. In order to 

reduce the dimensionality of the feature space, a number of dimensionality 

reduction techniques can be employed. 

Higher-level features can be obtained from already available features and added to the feature 

vector; for example, for the study of diseases the feature 'Age' is useful and is defined as Age 

= 'Year of death' minus 'Year of birth' . This process is referred to as feature construction. Feature 

construction is the application of a set of constructive operators to a set of existing features 

resulting in construction of new features. Examples of such constructive operators include 

checking for the equality conditions {=, ≠}, the arithmetic operators {+,−,×, /}, the array 

operators {max(S), min(S), average(S)} as well as other more sophisticated operators, for 

example count(S,C) that counts the number of features in the feature vector S satisfying some 

condition C or, for example, distances to other recognition classes generalized by some 

accepting device. Feature construction has long been considered a powerful tool for increasing 

both accuracy and understanding of structure, particularly in high-dimensional 

problems. Applications include studies of disease and emotion recognition from speech.  

4.4 Selection and Extraction 

The initial set of raw features can be redundant and too large to be managed. Therefore, a 

preliminary step in many applications of machine learning and pattern recognition consists 

of selecting a subset of features, or constructing a new and reduced set of features to facilitate 

learning, and to improve generalization and interpretability. 

Extracting or selecting features is a combination of art and science; developing systems to do 

so is known as feature engineering. It requires the experimentation of multiple possibilities 

and the combination of automated techniques with the intuition and knowledge of 

the domain expert. Automating this process is feature learning, where a machine not only 

uses features for learning, but learns the features itself. 
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4.5 FORMATION OF FEATURE MATRIX 

     256 SAMPLES POINTS 

 128+1 SAMPLES POINTS TO BE CONSIDERED 

FIG : 4.5 (A) 

 

USING THIS CONSIDERED 129 SAMPLE POINTS, WE GENERATE A 

PARTICULAR FEATURE MATRIX FOR EACH SET OF SAMPLES USED. 

FIG : 4.5 (B) 

Feature learning is the set of methods that allow to find an appropriate representation of data 

in order to perform a machine learning task. In other words, the goal of feature learning is to 

find a transformation that maps raw data into a representation that is more suitable for a 

machine learning task (e.g. classification). 

Let’s see it through an example. For this purpose, we will use a neural network, which exploits 

the concept of feature learning by its very nature. In a neural network, each hidden layer maps 

its input data to an inner representation that tends to capture a higher level of abstraction. 

Suppose we want to classify the next dataset: 
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 Dataset that we want to classify. 

Note that this dataset is not linearly separable, because we can't separate it using a linear 

model (such as a feedforward neural network without hidden layers) without tweaking our 

input. For example, when training a feedforward neural network without any hidden layer 

using this dataset, we obtain the next classification boundaries: 

 

 Classification boundaries obtained when we train a feedforward neural network without any 

hidden layer to classify our dataset. 

Here's where feature learning makes the difference. Neural networks can learn inner 

representations of data through hidden layers, and that's why they are so powerful. 

Accompanied by a proper non-linear activation function, hidden layers map its input data 

into a more abstract non-linear space. 

By learning multiple successive inner representations of data we expect to find a 

transformation such that the resulting latent features are linearly separable. Once we achieve 

that, performing a simple logistic regression on top of the network will be enough to make an 

accurate classification. 

Recall that we weren't able to separate one class from another with a straight line. Now, 

imagine you have Figure 1 plotted on a transparent sheet. What would you do to make data 

linearly separable? 

You could fold the transparent sheet at A=B. Note that now you can draw a straight line on 

the transparent sheet that separates one class from the other. You’ve just learnt an inner 

representation of data that makes it linearly separable! 

That's exactly what a neural network does. For example, when training a feedforward neural 

network with one hidden layer using our dataset, it learns the following inner 

representation of data: 

 

 Inner representation of data at the hidden layer. You could imagine this as a top view of the 

transparent sheet. Note that now we could easily draw a straight line separating one class 

from the other. 

 

Classification boundaries obtained when we train a feedforward neural network with one hidden layer to classify our dataset. 

Finally, it’s important to add that a neural network can learn much more complex 

transformations than folding a sheet. Also, I hope that I could provide you with the intuition 

behind inner representations of data and feature learning. 
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Features are the variables found in the given problem set that can strongly/sufficiently help 

us build an accurate predictive model. 

Eg : To predict the sale price of a house, size of the house is a feature. 

 Features are a column of data given as the input. They are also called as attributes 

or might sometimes be referred as dimensions. 

 A particular problem data set can have several features tagging to them. It is 

important to select the features that are more relevant to our problem so that the 

accuracy of the model improves. It also reduces the complexity of the model as we 

avoid the least significant / unnecessary feature data. The simpler model is simpler 

to understand and explain. 

 This Process is called feature engineering / selection and is one of the crucial step of 

pre-processing. Different algorithms can be used to implement it. 

 The Features can be of different types. 

o Simple Supervised selection where they are simple values like numbers and 

characters. 

 Eg: Size of the house (number) . 

o In unsupervised learning, the model is itself trained to recognize the features and 

work on it. 

 Eg: In character recognition, features may include histograms counting the number 

of black pixels along horizontal and vertical directions, number of internal holes, 

stroke detection and many others. 

Eg.: Loan Granting Problem 

Let us build a model that tells us if to give loan to a particular customer or not. 

Now its data will have many features/attributes attached to it : 

Loan id, Cust. Name, Cust. id, Cust.Addr, Employed (or) not, Age, Marital Status, Has already 

avail loan, Annual Income, no.of open accounts, tax liens, credit score, current balance and so 

on. 

Using the feature selection it can be observed that for a particular Customer, 

Employed (or) not, age, current credit score , annual income, already availed loancan 

significantly explain / contribute to the model accuracy better than the others. 

Thus they become the features for building our model for this particular problem. 

 

 

 

 

https://machinelearningmastery.com/an-introduction-to-feature-selection/
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OUTCOME (SPECTRUM ANALYSIS) 

4.6.1 SPECTRUM OF FIRST CLASS (COCKPIT 1) 

 

4.6.2SPECTRUM OF SECOND CLASS (COCKPIT 2) 
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4.6.3.SPECTRUM OF THIRD CLASS (COCKPIT 3) 
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4.6.5.SPECTRUM OF FIFTH CLASS (ENGINE 2) 

 

4.6.6.SPECTRUM OF SIXTH CLASS (FACTORY 1) 
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4.6.7.SPECTRUM OF SEVENTH CLASS (FACTORY 2) 

4.6.8.SPECTRUM OF SEVENTH CLASS (MACHINE GUN) 
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4.6.9.SPECTRUM OF NINTH CLASS (VOLVO BUS) 

4.6.10.SPECTRUM OF TENTH CLASS ( WHITE NOISE) 
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4.6.11.SPECTRUM OF ELEVENTH CLASS ( CLASSROOM BABEL 

NOISE) 

SPECTRUM OF TWELEVETH CLASS (HIGH FREQUENCY 

CHANNEL 
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OBSERVATIONS 
After the simulation , we get our confusion matrix as - : 

From above , we observe the folloing scenario-: 

Class - babble.wav[CLS ID : I] 

HIT = 71.98 % 

FA = 1.87 % 

ACC = 95.95 % 

----------------------------------- 

Class - cockpit_buccaneer1.wav[CLS ID : II] 

HIT = 82.07 % 

FA = 0.32 % 

ACC = 98.21 % 

----------------------------------- 

Class - cockpit_buccaneer2.wav[CLS ID : III] 

HIT = 97.04 % 
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FA = 0.95 % 

ACC = 98.89 % 

----------------------------------- 

Class - cockpit_f16.wav[CLS ID : IV] 

HIT = 95.92 % 

FA = 0.36 % 

ACC = 99.33 % 

Class - destroyerengine.wav[CLS ID : V] 

HIT = 97.12 % 

FA = 0.25 % 

ACC = 99.53 % 

----------------------------------- 

Class - destroyerops.wav[CLS ID : VI] 

HIT = 84.47 % 

FA = 1.30 % 

ACC = 97.51 % 

----------------------------------- 

Class - factory1.wav[CLS ID : VII] 

HIT = 69.90 % 

FA = 3.04 % 

ACC = 94.71 % 

----------------------------------- 

 

 

 

Class - factory2.wav[CLS ID : VIII] 

HIT = 82.63 % 

FA = 1.93 % 

ACC = 96.78 
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Class - hfchannel.wav[CLS ID : IX] 

HIT = 98.72 % 

FA = 0.20 % 

ACC = 99.71 % 

----------------------------------- 

Class - machinegun.wav[CLS ID : X] 

HIT = 96.56 % 

FA = 2.88 % 

ACC = 97.08 % 

----------------------------------- 

Class - volvo.wav[CLS ID : XI] 

HIT = 80.30 % 

FA = 0.34 % 

ACC = 98.05 % 

----------------------------------- 

Class - white.wav[CLS ID : XII] 

HIT = 91.99 % 

FA = 0.32 % 

ACC = 99.04 % 
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RECEIVER OPERATING 

CHARACTERISTICS 

INTRODUCTION 

In statistics, a receiver operating characteristic curve, i.e. ROC curve, is a graphical plot that 

illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is 

varied. The Total Operating Characteristic (TOC) expands on the idea of ROC by showing 

the total information in the two-by-two contingency table for each threshold. ROC gives 

only two bits of relative information for each threshold, thus the TOC gives strictly more 

information than the ROC.  

 

The ROC curve is created by plotting the true positive rate (TPR) against the false positive 

rate (FPR) at various threshold settings. The true-positive rate is also known 

as sensitivity, recall or probability of detection in machine learning. The false-positive rate is 

also known as the fall-out or probability of false alarm and can be calculated as (1 − specificity). 

It can also be thought of as a plot of the Power as a function of the Type I Error of the 

decision rule (when the performance is calculated from just a sample of the population, it 

can be thought of as estimators of these quantities). The ROC curve is thus the sensitivity as 

a function of fall-out. In general, if the probability distributions for both detection and false 

alarm are known, the ROC curve can be generated by plotting the cumulative distribution 

function (area under the probability distribution from minus infinity to the discrimination 

threshold) of the detection probability in the y-axis versus the cumulative distribution 

function of the false-alarm probability on the x-axis. 

ROC analysis provides tools to select possibly optimal models and to discard suboptimal 

ones independently from (and prior to specifying) the cost context or the class distribution. 

ROC analysis is related in a direct and natural way to cost/benefit analysis of 

diagnostic decision making. 

 

The ROC curve was first 

developed by electrical 

engineers and radar engineers 

during World War II for 

detecting enemy objects in 

battlefields and was soon 

introduced to psychology to 

account for perceptual 

detection of stimuli. ROC 

analysis since then has been  

 FIG : 6.1(A) 
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used in medicine, radiology, biometrics, forecasting of natural hazards, meteorology, model 

performance assessment, and other areas for many decades and is increasingly used 

in machine learning and data mining research. 

The ROC is also known as a relative operating characteristic curve, because it is a 

comparison of two operating characteristics (TPR and FPR) as the criterion changes.  

In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive 

rate (100-Specificity) for different cut-off points of a parameter. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. The 

area under the ROC curve (AUC) is a measure of how well a parameter can distinguish 

between two diagnostic groups (diseased/normal). 

The diagnostic performance of a test, or the accuray of a test to discriminate diseased cases 

from normal cases is evaluated using Receiver Operating Characteristic (ROC) curve analysis 

(Metz, 1978; Zweig & Campbell, 1993). ROC curves can also be used to compare the diagnostic 

performance of two or more laboratory or diagnostic tests (Griner et al., 1981). 

When you consider the results of a particular test in two populations, one population with a 

disease, the other population without the disease, you will rarely observe a perfect separation 

between the two groups. Indeed, the distribution of the test results will overlap, as shown in 

the following figure. 

 

 

 

 

 

 

 

FIG : 6.2 

For every possible cut-off point or criterion value you select to discriminate between the two 

populations, there will be some cases with the disease correctly classified as positive (TP = 

True Positive fraction), but some cases with the disease will be classified negative (FN = 

False Negative fraction). On the other hand, some cases without the disease will be correctly 

classified as negative (TN = True Negative fraction), but some cases without the disease will 

be classified as positive (FP = False Positive fraction). 

 

 

 

 

 

The different fractions (TP, FP, TN, FN) are represented in the following table. 
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  Disease             

Test Present n   Absent n   Total 

Positive True Positive (TP) a   False Positive (FP) c   a + c 

Negative False Negative (FN) b   True Negative (TN) d   b + d 

Total   a + b     c + d     

  

The following statistics can be defined: 

Sensitivity 
a 

a + b 
 

  Specificity 
d 

c + d 
 

Positive 

Likelihood 

Ratio 

Sensitivity 

1 - Specificity 
 

  

Negative 

Likelihood 

Ratio 

1 - Sensitivity 

Specificity 
 

Positive 

Predictive 

Value 

a 

a + c 
 

  

Negative 

Predictive 

Value 

d 

b + d 
 

 Sensitivity: probability that a test result will be positive when the disease is present 

(true positive rate, expressed as a percentage).  

= a / (a+b) 

 Specificity: probability that a test result will be negative when the disease is not 

present (true negative rate, expressed as a percentage).  

= d / (c+d) 

 Positive likelihood ratio: ratio between the probability of a positive test result given 

the presence of the disease and the probability of a positive test result given 

the absence of the disease, i.e.  

= True positive rate / False positive rate = Sensitivity / (1-Specificity) 

 Negative likelihood ratio: ratio between the probability of a negative test result given 

the presence of the disease and the probability of a negative test result given 

the absence of the disease, i.e.  

= False negative rate / True negative rate = (1-Sensitivity) / Specificity 

 Positive predictive value: probability that the disease is present when the test is 

positive (expressed as a percentage).  

= a / (a+c) 

 Negative predictive value: probability that the disease is not present when the test is 

negative (expressed as a percentage).  

= d  / (b+d) 
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When you select a higher criterion value, the false positive fraction will decrease with 

increased specificity but on the other hand the true positive fraction and sensitivity will 

decrease: 

 

 

 

 

 

 

FIG : 6.3 

When you select a lower threshold value, then the true positive fraction and sensitivity will 

increase. On the other hand the false positive fraction will also increase, and therefore the 

true negative fraction and specificity will decrease. 

ROC -:BASIC CONCEPTS 

A classification model (classifier or diagnosis) is a mapping of instances between certain 

classes/groups. The classifier or diagnosis result can be a real value (continuous output), in 

which case the classifier boundary between classes must be determined by a threshold value 

(for instance, to determine whether a person has hypertension based on a blood 

pressure measure). Or it can be a discrete class label, indicating one of the classes. 

Let us consider a two-class prediction problem (binary classification), in which the outcomes 

are labeled either as positive (p) or negative (n). There are four possible outcomes from a 

binary classifier. If the outcome from a prediction is p and the actual value is also p, then it is 

called a true positive (TP); however if the actual value is n then it is said to be a false 

positive (FP). Conversely, a true negative (TN) has occurred when both the prediction 

outcome and the actual value are n, and false negative (FN) is when the prediction outcome 

is n while the actual value is p. 

To get an appropriate example in a real-world problem, consider a diagnostic test that seeks 

to determine whether a person has a certain disease. A false positive in this case occurs 

when the person tests positive, but does not actually have the disease. A false negative, on 

the other hand, occurs when the person tests negative, suggesting they are healthy, when 

they actually do have the disease. 

 

Let us define an experiment from P positive instances and N negative instances for some 

condition. The four outcomes can be formulated in a 2×2 contingency table or confusion matrix, 

as follows: 
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https://en.wikipedia.org/wiki/Countable_set
https://en.wikipedia.org/wiki/Binary_classification
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https://en.wikipedia.org/wiki/Confusion_matrix
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True condition 

 

Total 
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latio

n 

Condition 
positive 

Condition 
negative 

Prevalence = Σ Co

ndition 

positive/Σ Total 

population 

Accuracy (ACC) = Σ True 
positive + Σ True 

negative/Σ Total population 

Pred
icte

d 
con
ditio

n 

Pred
icted 
cond
ition 
posit
ive 

True 
positive, 

Power 

False 
positive, 

Type I error 

Positive predictive 
value (PPV), Precisi

on = Σ True 

positive/Σ Predicte

d condition positive 

False discovery rate (FDR) 
= Σ False 

positive/Σ Predicted condition 

positive 

Pred
icted 
cond
ition 
nega
tive 

False 
negative, 

Type II error 
True negative  

False omission 
rate (FOR) = Σ 

False 

negative/Σ Predicte

d condition negativ

e 

Negative predictive 
value (NPV) = Σ True 

negative/Σ Predicted conditio

n negative 

 

True positive 
rate (TPR), Re
call, Sensitivity

, 
probability of d

etection = Σ 

True 

positive/Σ Con

dition positive 

False positive 
rate (FPR), Fall-

out, 
probability of fal

se alarm = Σ 

False 

positive/Σ Cond

ition negative 

Positive likelihood 

ratio (LR+) = TPR/

FPR 
Diagnostic 

odds 
ratio (DOR)

 = LR+/LR

− 

F1 score = 2/1/R

ecall + 1/Precisio

n False negative 
rate (FNR), 

Miss rate = Σ 

False 

negative/Σ Co

ndition positiv

e 

True negative 
rate (TNR), Spe

cificity(SPC) = 
Σ True 

negative/Σ Con

dition negative 

Negative likelihood 

ratio (LR−) = FNR/

TNR 

  TABLE : 2 

In a Receiver Operating Characteristic (ROC) curve the true positive rate (Sensitivity) is 

plotted in function of the false positive rate (100-Specificity) for different cut-off points. Each 

point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular 

decision threshold. A test with perfect discrimination (no overlap in the two distributions) 

has a ROC curve that passes through the upper left corner (100% sensitivity, 100% 

specificity). Therefore the closer the ROC curve is to the upper left corner, the higher the 

overall accuracy of the test  
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FIG : 6.5 

In order to perform ROC curve analysis in MedCalc you should have a measurement of 

interest (= the parameter you want to study) and an independent diagnosis which classifies 

your study subjects into two distinct groups: a diseased and non-diseased group. The latter 

diagnosis should be independent from the measurement of interest. 

In the spreadsheet, create a column DIAGNOSIS and a column for the variable of interest, e.g. 

TEST1. For every study subject enter a code for the diagnosis as follows: 1 for the diseased 

cases, and 0 for the non-diseased or normal cases. In the TEST1 column, enter the 

measurement of interest (this can be measurements, grades, etc. - if the data are categorical, 

code them with numerical values). 

 

 

 

 

 

 

 

 

 

 

 

FIG : 6.6 
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Data 

 Variable: select the variable of interest. 

 Classification variable: select or enter a a dichotomous variable indicating 

diagnosis (0=negative, 1=positive). 

If your data are coded differently, you can use the Define status tool to recode your 

data. 

 Filter: (optionally) a filter in order to include only a selected subgroup of cases (e.g. 

AGE>21, SEX="Male"). 

Methodology: 

 DeLong et al.: use the method of DeLong et al. (1988) for the calculation of the 

Standard Error of the Area Under the Curve (recommended). 

 Hanley & McNeil: use the method of Hanley & McNeil (1982) for the calculation 

of the Standard Error of the Area Under the Curve. 

 Binomial exact Confidence Interval for the AUC: calculate an exact Binomial 

Confidence Interval for the Area Under the Curve (recommended). If this option is 

not selected, the Confidence Interval is calculated as AUC ± 1.96 its Standard Error. 

Disease prevalence 

Whereas sensitivity and specificity, and therefore the ROC curve, and positive and negative 

likelihood ratio are independent of disease prevalence, positive and negative predictive 

values are highly dependent on disease prevalence or prior probability of disease. 

Therefore when disease prevalence is unknown, the program cannot 

calculate positive and negative predictive values. 

Clinically, the disease prevalence is the same as the probability of disease being present 

before the test is performed (prior probability of disease). 

 Unknown: select this option when the disease prevalence is unknown, or irrelevant 

for the current statistical analysis. 

 The ratio of cases in the positive and negative groups reflects the prevalence of 

the disease: if the sample sizes in the positive and the negative group reflect the 

real prevalence of the disease in the population, this can be indicated by selecting 

this option. 

 Other value (%): alternatively you can enter a value for the disease prevalence, 

expressed as a percentage. 

 

 

 

https://www.medcalc.org/manual/define_status.php
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Options 

 List criterion values with test characteristics: option to create a list of criterion 

values corresponding with the coordinates of the ROC curve, with associated 

sensitivity, specificity, likelihood ratios and predictive values (if disease prevalence 

is known). 

o Include all observed criterion values: When you select this option, the program 

will list sensitivity and specificity for all possible threshold values. If this option is 

not selected, then the program will only list the more important points of the ROC 

curve: for equal sensitivity/specificity it will give the threshold values (criterion 

values) with the highest specificity/sensitivity. 

 95% Confidence Interval for sensitivity/specificity, likelihood ratio and predictive 

values: select the Confidence Intervals you require. 

 Calculate optimal criterion value taking into account costs: option to calculate the 

optimal criterion value taking into account the disease prevalence and cost of false 

and true positive and negative decisions (Zweig & Campbell, 1993). This option is 

only available if disease prevalence is known (see above). 

o FPc: the cost of a false positive decision. 

o FNc: the cost of a false negative decision. 

o TPc: the cost of a true positive decision. 

o TNc: the cost of a true negative decision. 

These data are used to calculate a parameter S as follows: 

 

where P denotes the prevalence in the target population (Greiner et al., 2000). The 

point on the ROC curve where a line with this slope S touches the curve is the 

optimal operating point, taking into account prevalence and the costs of the 

different decisions. 

Costs can be financial costs or health costs, but all 4 cost factors need to be expressed 

on a common scale. Benefits can be expressed as negative costs. Suppose a false 

negative (FN) decision is judged to be twice as costly as a false positive (FP) 

decision, and no assumptions are made about the costs for true positive and true 

negative decisions. Then for FNc you enter 2, for FPc enter 1 and enter 0 for both 

TPc and TNc. 

Because the slope S must be a positive number: 

o FPc cannot be equal to TNc 

o FNc cannot be equal to TPc 

o When TNc is larger than FPc then TPc must be larger than FNc 
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o When TNc is smaller than FPc then TPc must be smaller than FNc 

The parameter S is "cost-neutral" when (FPc-TNc)/(FNc-TPc) evaluates to 1, that is 

when FPc-TNc equals FNc-TPc. In this case S, and the "optimal criterion value" 

depends only on the disease prevalence. 

 Advanced: click this button for some advanced options: 

These options require bootstrapping and are computationally intensive and time 

consuming. 

o Estimation of sensitivity and specificity at fixed specificity and sensitivity: 

compile a table with estimation of sensitivity and specificity, with a 

BCabootstrapped 95% confidence interval (Efron, 1987; Efron & Tibshirani, 1993), 

for a fixed and prespecified specificity and sensitivity of 80%, 90%, 95% and 97.5% 

(Zhou et al., 2002). 

o Bootstrap Youden index confidence interval: calculate a BCa bootstrapped 95% 

confidence interval for the Youden index and its associated criterion value. 

o Bootstrap replications: enter the number of bootstrap replications. 1000 replications 
is a number commonly encountered in the literature. High numbers increase accuracy 
but also increase processing time. 

o Random-number seed: this is the seed for the random number generator. Enter 0 for 
a random seed; this can result in different confidence intervals when the procedure is 
repeated. Any other value will give a repeatable "random" sequence, which will result 
in repeatable values for the confidence intervals. 

ROC graph 

 Select Display ROC curve window to obtain the graph in a separate window. 

Options: 

o mark points corresponding to criterion values. 

o display 95% Confidence Bounds for the ROC curve  

 The prevalence of a disease may be different in different clinical settings. For instance 

the pre-test probability for a positive test will be higher when a patient consults a 

specialist than when he consults a general practitioner. Since positive and negative 

predictive values are sensitive to the prevalence of the disease, it would be misleading 

to compare these values from different studies where the prevalence of the disease 

differs, or apply them in different settings. 

 The data from the results window can be summarized in a table. The sample size in 

the two groups should be clearly stated. The table can contain a column for the 

different criterion values, the corresponding sensitivity (with 95% CI), specificity (with 

95% CI), and possibly the positive and negative predictive value. The table should not 

only contain the test's characteristics for one single cut-off value, but preferably there 

should be a row for the values corresponding with a sensitivity of 90%, 95% and 97.5%, 

specificity of 90%, 95% and 97.5%, and the value corresponding with the Youden index 

or highest accuracy. 
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In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive 

rate (100-Specificity) for different cut-off points. Each point on the ROC curve represents a 

sensitivity/specificity pair corresponding to a particular decision threshold. A test with 

perfect discrimination (no overlap in the two distributions) has a ROC curve that passes 

through the upper left corner (100% sensitivity, 100% specificity). Therefore the closer the 

ROC curve is to the upper left corner, the higher the overall accuracy of the test -: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG : 6.7 

ROC SPACE 

 

The ROC space and plots of the four prediction examples. 

The contingency table can derive several evaluation "metrics" (see infobox). To draw a ROC 

curve, only the true positive rate (TPR) and false positive rate (FPR) are needed (as functions 

of some classifier parameter). The TPR defines how many correct positive results occur 

among all positive samples available during the test. FPR, on the other hand, defines how 

many incorrect positive results occur among all negative samples available during the test. 
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A ROC space is defined by FPR and TPR as x and y axes, respectively, which depicts relative 

trade-offs between true positive (benefits) and false positive (costs). Since TPR is equivalent 

to sensitivity and FPR is equal to 1 − 

specificity, the ROC graph is 

sometimes called the sensitivity vs (1 

− specificity) plot. Each prediction 

result or instance of a confusion 

matrix represents one point in the 

ROC space. 

The best possible prediction method 

would yield a point in the upper left 

corner or coordinate (0,1) of the ROC 

space, representing 100% sensitivity 

(no false negatives) and 100% 

specificity (no false positives). The 

(0,1) point is also called a perfect 

classification. A random guess would 

give a point along a diagonal line (the 

so-called line of no-discrimination) from 

the left bottom to the top right corners 

(regardless of the positive and 

negative base rates). An intuitive 

        FIG : 6.8 

example of random guessing is a decision by flipping coins. As the size of the sample 

increases, a random classifier's ROC point migrates towards the diagonal line. In the case of 

a balanced coin, it will migrate to the point (0.5, 0.5). 

The diagonal divides the ROC space. Points above the diagonal represent good classification 

results (better than random), points below the line represent poor results (worse than 

random). Note that the output of a consistently poor predictor could simply be inverted to 

obtain a good predictor. 
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55 | P a g e  
 

Let us look into four prediction results from 100 positive and 100 negative instances: 
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TPR = 0.63 TPR = 0.77 TPR = 0.24 TPR = 0.76 

FPR = 0.28 FPR = 0.77 FPR = 0.88 FPR = 0.12 

PPV = 0.69 PPV = 0.50 PPV = 0.21 PPV = 0.86 

F1 = 0.66 F1 = 0.61 F1 = 0.22 F1 = 0.81 

ACC = 0.68 ACC = 0.50 ACC = 0.18 ACC = 0.82 

Plots of the four results above in the ROC space are given in the figure. The result of 

method A clearly shows the best predictive power among A, B, and C. The result of B lies on 

the random guess line (the diagonal line), and it can be seen in the table that the accuracy 

of B is 50%. However, when C is mirrored across the center point (0.5,0.5), the resulting 

method C′ is even better than A. This mirrored method simply reverses the predictions of 

whatever method or test produced the C contingency table. Although the original C method 

has negative predictive power, simply reversing its decisions leads to a new predictive 

method C′ which has positive predictive power. When the C method predicts p or n, 

the C′ method would predict n or p, respectively. In this manner, the C′ test would perform 

the best. The closer a result from a contingency table is to the upper left corner, the better it 

predicts, but the distance from the random guess line in either direction is the best indicator 

of how much predictive power a method has. If the result is below the line (i.e. the method is 
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worse than a random guess), all of the method's predictions must be reversed in order to 

utilize its power, thereby moving the result above the random guess line. 

CURVES IN ROC SPACES 

In binary classification, the class prediction for each instance is often made based on 

a continuous random variable X , which is a "score" computed for the instance (e.g. 

estimated probability in logistic regression). Given a threshold parameter T , the instance is 

classified as "positive" if X>T , and "negative" otherwise. X  follows a probability 

density f(x)  if the instance actually belongs to class "positive", and g(x)  if otherwise. 

Therefore, the true positive rate is given by TPR and the false positive rate is given by FPR. 

The ROC curve plots parametrically TPR(T) versus FPR(T) with T as the varying parameter. 

For example, imagine that the blood protein levels in diseased people and healthy people 

are normally distributed with means of 2 g/dL and 1 g/dL respectively. A medical test might 

measure the level of a certain protein in a blood sample and classify any number above a 

certain threshold as indicating disease. The experimenter can adjust the threshold (black 

vertical line in the figure), which will in turn change the false positive rate. Increasing the 

threshold would result in fewer false positives (and more false negatives), corresponding to 

a leftward movement on the curve. The actual shape of the curve is determined by how 

much overlap the two distributions have. These concepts are demonstrated in the Receiver 

Operating Characteristic (ROC) Curves Applet. 

FURTHER INTERPRETATIONS 

Sometimes, the ROC is used to generate a summary statistic. Common versions are: 

 the intercept of the ROC curve with the line at 45 degrees orthogonal to the no-

discrimination line - the balance point where Sensitivity = Specificity 

 the intercept of the ROC curve with the tangent at 45 degrees parallel to the no-

discrimination line that is closest to the error-free point (0,1) - also called Youden's J 

statisticand generalized as Informedness[7] 

 the area between the ROC curve and the no-discrimination line - Gini Coefficient 

 the area between the full ROC curve and the triangular ROC curve including only (0,0), 

(1,1) and one selected operating point (tpr,fpr) - Consistency 

 the area under the ROC curve, or "AUC" ("Area Under Curve"), or A' (pronounced "a-

prime"), or "c-statistic". 

 the sensitivity index d' (pronounced "d-prime"), the distance between the mean of the 

distribution of activity in the system under noise-alone conditions and its distribution 

under signal-alone conditions, divided by their standard deviation, under the 

assumption that both these distributions are normal with the same standard deviation. 

Under these assumptions, the shape of the ROC is entirely determined by d'. 

However, any attempt to summarize the ROC curve into a single number loses information 

about the pattern of tradeoffs of the particular discriminator algorithm. 

Area under the curve 

When using normalized units, the area under the curve (often referred to as simply the 

AUC) is equal to the probability that a classifier will rank a randomly chosen positive 

https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Gram
https://en.wikipedia.org/wiki/Decilitre
https://kennis-research.shinyapps.io/ROC-Curves/
https://kennis-research.shinyapps.io/ROC-Curves/
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Specificity_(statistics)
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#cite_note-Powers2007-7
https://en.wikipedia.org/wiki/Gini_Coefficient
https://en.wikipedia.org/wiki/Sensitivity_index
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Normal_distribution
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instance higher than a randomly chosen negative one (assuming 'positive' ranks higher than 

'negative').   

It is also common to calculate the Area Under the ROC Convex Hull (ROC AUCH = ROCH 

AUC) as any point on the line segment between two prediction results can be achieved by 

randomly using one or other system with probabilities proportional to the relative length of 

the opposite component of the segment. Interestingly, it is also possible to invert concavities 

– just as in the figure the worse solution can be reflected to become a better solution; 

concavities can be reflected in any line segment, but this more extreme form of fusion is 

much more likely to overfit the data.  

The machine learning community most often uses the ROC AUC statistic for model 

comparison. However, this practice has recently been questioned based upon new machine 

learning research that shows that the AUC is quite noisy as a classification measure[18] and 

has some other significant problems in model comparison. A reliable and valid AUC 

estimate can be interpreted as the probability that the classifier will assign a higher score to a 

randomly chosen positive example than to a randomly chosen negative example. However, 

the critical research suggests frequent failures in obtaining reliable and valid AUC estimates. 

Thus, the practical value of the AUC measure has been called into question, raising the 

possibility that the AUC may actually introduce more uncertainty into machine learning 

classification accuracy comparisons than resolution. Nonetheless, the coherence of AUC as a 

measure of aggregated classification performance has been vindicated, in terms of a uniform 

rate distribution, and AUC has been linked to a number of other performance metrics such 

as the Brier score.  

One recent explanation of the problem with ROC AUC is that reducing the ROC Curve to a 

single number ignores the fact that it is about the tradeoffs between the different systems or 

performance points plotted and not the performance of an individual system, as well as 

ignoring the possibility of concavity repair, so that related alternative measures such as 

Informedness[7] or DeltaP are recommended. These measures are essentially equivalent to 

the Gini for a single prediction point with DeltaP' = Informedness = 2AUC-1, whilst DeltaP = 

Markedness represents the dual (viz. predicting the prediction from the real class) and their 

geometric mean is the Matthews correlation coefficient.[7] 

Other measures 

Whereas ROC AUC varies between 0 and 1 — with an uninformative classifier yielding 0.5 

— the alternative measures Informedness and Gini Coefficient (in the single 

parameterization or single system case)[7] all have the advantage that 0 represents chance 

performance whilst 1 represents perfect performance, and −1 represents the "perverse" case 

of full informedness always giving the wrong response. Bringing chance performance to 0 

allows these alternative scales to be interpreted as Kappa statistics. Informedness has been 

shown to have desirable characteristics for Machine Learning versus other common 

definitions of Kappa such as Cohen Kappa and Fleiss Kappa.  

Sometimes it can be more useful to look at a specific region of the ROC Curve rather than at 

the whole curve. It is possible to compute partial AUC. For example, one could focus on the 

region of the curve with low false positive rate, which is often of prime interest for 

population screening tests. Another common approach for classification problems in which 

P ≪ N (common in bioinformatics applications) is to use a logarithmic scale for the x-axis. 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#cite_note-Hanczar2010-18
https://en.wikipedia.org/wiki/Brier_score
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#cite_note-Powers2007-7
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#cite_note-Powers2007-7
https://en.wikipedia.org/wiki/Gini_Coefficient
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#cite_note-Powers2007-7
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Fleiss%27_kappa
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OUR OUTPUT 

FIG : 6.9 

Class seven(factory 1) has least hit point whereas class nine(hf channel) has highest it point 

ratio. The Receiver Operating Characteristic (ROC) curve is created by plotting the true 

positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The 

true-positive rate is also known as sensitivity, recall or probability of detection, whereas the 

false-positive rate is also known as the fall-out or probability of false alarm.  

In a ROC curve the true positive rate (Sensitivity) is plotted in function of the false positive 

rate (100-Specificity) for different cut-off points.. A test with perfect discrimination (no 

overlap in the two distributions) has a ROC curve that passes through the upper left corner 

(100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the upper left 

corner, the higher the overall accuracy of the test. 

https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/True_positive_rate
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/Sensitivity_(tests)
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https://en.wikipedia.org/wiki/Information_retrieval


59 | P a g e  
 

 

 

REFERENCE 

 Our Project Guide respected Sir Mr. Sujoy Mondal,  Asst. Professor , Dept. of ECE 

RCC Institute of Information Technology. 

 Other resources- Internet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

 

 

 



60 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

 

                                    

 

THANK YOU………. 


