
Color Sorting Machine using Micro-
controller

A Project report submitted in partial fulfillment
of the requirements for the degree of B. Tech in Electrical Engineering

by

SOUMYADIP BARMAN (11701618022)

SUBRATA MONDAL (11701618015)
ABHIJNAN SARKAR (11701618067)

Under the supervision of

Mr. Budhaditya Biswas
Assistant Professor

Department of Electrical Engineering

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATION TECHNOLOGY
CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

Maulana Abul Kalam Azad University of Technology (MAKAUT)
© 2022

This work has been dedicated to the memory of our beloved teacher

Mr. Debobrata Bhattacharya

Professor, Applied Electronics & Instrumentation Engineering

 Department of Electrical Engineering
RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL
PHONE: 033-2323-2463-154, FAX: 033-2323-4668

 Email: hodeercciit@gmail.com, Website: http://www.rcciit.org/academic/ee.aspx

CERTIFICATE

To whom it may concern

This is to certify that the project work entitled Color Sorting Machine using Micro-
controller is the bonafide work carried out by SOUMYADIP BARMAN (11701618022),
SUBRATA MONDAL (11701618015) and ABHIJNAN SARKAR (11701618067), the
students of B.Tech in the Department of Electrical Engineering, RCC Institute of Information
Technology (RCCIIT), Canal South Road, Beliaghata, Kolkata-700015, affiliated to Maulana
Abul Kalam Azad University of Technology (MAKAUT), West Bengal, India, during the
academic year 2016-17, in partial fulfillment of the requirements for the degree of Bachelor of
Technology in Electrical Engineering and that this project has not submitted previously for the
award of any other degree, diploma and fellowship.

(Budhaditya Biswas)
 Assistant Professor

Department of Electrical Engineering
RCC Institute of Information Technology

Countersigned by

(Prof. Dr. Debasish Mondal)
HOD, Electrical Engineering Dept (External Examiner)
RCC Institute of Information Technology

ACKNOWLEDGEMENT

It is our great fortune that we have got opportunity to carry out this project work
under the supervision of Mr. Budhaditya Biswas in the Department of Electrical
Engineering, RCC Institute of Information Technology (RCCIIT), Canal South
Road, Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad
University of Technology (MAKAUT), West Bengal, India. We express our
sincere thanks and deepest sense of gratitude to our guide for his constant support,
unparalleled guidance and limitless encouragement.

We would also like to convey our gratitude to all the faculty members and staffs
of the Department of Electrical Engineering, RCCIIT for their whole hearted
cooperation to make this work turn into reality.

We are very thankful to Mr. Nitai Banerjee Sir for his support and effort to build
the shaft of the motor in the mechanical workshop.

We would also like to convey our gratitude to Mr. Nijam Uddin Molla Sir to
help us in our soldering process to build the circuit.

We are very thankful to the authority of RCCIIT for providing all kinds of
infrastructural facility towards the research work.

Thanks to the fellow members of our group for working as a team.

SOUMYADIP BARMAN (11701618022)

SUBRATA MONDAL (11701618015)

ABHIJNAN SARKAR (11701618067)

To

The Head of the Department
Department of Electrical Engineering
RCC Institute of Information Technology
Canal South Rd. Beliagahata, Kolkata-700015

Respected Sir,

In accordance with the requirements of the degree of Bachelor of Technology in the

Department of Electrical Engineering, RCC Institute of Information Technology, we present the

following thesis entitled “Color Sorting Machine using Micro-controller”. This work was

performed under the valuable guidance of Mr. Budhadtiya Biswas, Assistant Professor in the

Dept. of Electrical Engineering.

We declare that the thesis submitted is our own, expected as acknowledge in the test and

reference and has not been previously submitted for a degree in any other Institution.

Yours Sincerely,

SOUMYADIP BARMAN (11701618022)

SUBRATA MONDAL (11701618015)

ABHIJNAN SARKAR (11701618067)

Contents

 Topic Page No.

List of figures i

List of tables ii

Abbreviations and acronyms iii

Abstract 1

Chapter 1 (Introduction)

 1.1 Introduction 3

 1.2 Color sorting process 3

1.3 Overview and benefits of the project 4

 1.4 Organization of Thesis 4

Chapter 2 (Literature Review) 6

Chapter 3 (Theory)

 3.1 Microcontroller (MCU) 11

 3.1.1 How do microcontroller work? 11

 3.1.2 What are the elements of a microcontroller? 11

3.1.3 Microcontroller Features 12

3.1.4 Microcontroller Applications 12

3.1.5 Microcontroller vs Microprocessors 12

3.2 ESP32 Microcontroller 13

 3.2.1 ESP32 Functional Block and Features 13

 3.2.2 ESP32 Architectural Block Diagram 14

 3.2.3 ESP32 Core 14

 3.2.4 ESP32 Internal Memories & their Functions 15

 3.2.5 ESP32 Pinout Diagram and Pins 15

 3.2.6 How to select ESP32 development board 20

3.3 Installing ESP32 Add-on in Arduino IDE 20

3.4 Stepper Motor Basics 22

 3.4.1 Stepper Motor Working Principles 23

 3.4.2 Stepper Motor Control 23

 3.4.3 Stepper Motor Driver Types 24

 3.4.4 Stepper Motor uses & Application 25

3.5 A4988 Stepper Motor Driver Chip 25

 3.5.1 A4988 Motor Driver Pinout 26

 3.5.2 Power Connection Pins 26

 3.5.3 Micro-step Selection Pins 26

 3.5.4 Control Input Pins 27

 3.5.5 Pins for Controlling Power Status 28

 3.5.6 Output Pins 29

3.6 Interfacing TSC230/TSC3200 color sensor 29

 Node MCU/ESP32

 3.6.1 How Color Sensors Work 29

 3.6.2 TSC230 Color Sensor Module 31

 3.6.3 TSC230 Operation 31

 3.6.4 TSC230 Color Sensor Module Pinout 32

 3.6.5 Wiring TSC230 Color Sensor to 33

 Node MCU/ESP32

 3.6.6 Calibrating the Sensor 33

 3.6.7 Code Expansion 36

3.7 Interfacing Servo Motor with ESP32 41

 3.7.1 Connecting the Servo Motor to The ESP32 41

 3.7.2 Schematic 42

 3.7.3 How to Control a Servo Motor 43

 3.7.4 Preparing the Arduino IDE 43

 3.7.5 Installing the ESP32_Arduino_Servo_Library 43

 3.7.6 Testing an Example 44

 3.7.7 Understanding the Code 44

 3.7.8 Testing the Sketch 45

3.8 Overview of the projects 45

3.9 Circuit Diagram 46

Chapter 4 (Hardware Modeling)

4.1 Main Features of the Prototype 48

4.2 Photographs of the Main Controller Board 48

4.3 Step by step operation of the prototype 49

4.4 Components Required 49

4.5 Hardware Interfacing 50

 4.5.1 TSC230 Interfacing with Microcontroller 50

 4.5.2 A4988 Interfacing with ESP32 50

 4.5.3 Servo Motor Interfacing with ESP32 51

Chapter 5 (Logic & Operation)

 5.1 Introduction 54

 5.2 Flow chart 54

 5.3 Principle & operations 55

 5.4 Cost estimation of the project 55

 5.5 Photographs of the prototype 56

Chapter 6 (Conclusion & Future scope)

 6.1 Conclusion 59

 6.2 Results 59

 6.3 Future works 59

Chapter 7 (Reference) 61

Appendix A (Hardware Description) 62 – 67

Appendix B (Software Coding) 68 – 71

Appendix C (Datasheets) 72

List of Figures

Sl. No. Figure name Page No.

1 Basics Blocks of the Colour Sensing and Sorting Process 4
2 ESP32 Microcontroller 12
3 ESP32 Architectural Block Diagram 14
4 ESP32 Memory Block Diagram 14
5 Cross-Section of a Stepper Motor 23
6 Stepper Motor Steps 23
7 Motor Control Basic Scheme 24
8 Stepper Motor Driver A4988 25
9 A4988 Pin Diagram 26
10 A4988 Power Pins 26
11 A4988 Micro-Step Pin Selection 27
12 A4988 Control Pins 28
13 A4988 Power state Control Pins 28
14 A4988 Output Pins 29
15 Colour Sensing Principle 30
16 Colour Sensor Array 30
17 Colour Sensor Filtration 30
18 Colour Sensor Module TSC230 31
19 Sensor Array Inside the Module 31

20 TSC230 Module Pinout 32
21 Interfacing TSC230 with ESP32 33
22 Servo Interfacing with ESP32 43
23 Overview of the Project 45
24 Circuit Diagram of the Developed Prototype 46
25 Main Controller Board 48
26 TSC230 Colour Sensor 50
27 A4988 Interfacing with ESP32 51
28 Interfacing Servo Motor with ESP32 52
29 Flow Chart of the Program 54
30 Main Controller Board 56
31 The Prototype 56
32 Different Sections of the Developed Prototype 57
33 Close Loop Stepper Motor 59
34 Transformer Less SMPS 5 Volt Power Supply 63
35 Resistor 64
36 Colour Code for Resistance 64
37 ESP32 Microcontroller 65
38 Blank Glass Epoxy PCB Board 65
39 Stepper Motor 66
40 A4988 Stepper Motor Driver 67

i

List of Tables

Sl. No. Table Page No.

1 SPI Pin Mapping 19
2 Micro-stepping Selection 27
3 Photodiode Filter Selection 32
4 Output Frequency Scaling 32
5 Servo Motor Pinout 42
6 Component Listing 49
7 Costing of the Project 55

ii

ABBREVIATIONS AND ACRONYMS

SCL – Serial Clock
SDA – Serial Data
SoC – System on a chip
IC - Integrated Circuit
PCB – Printed Circuit Board
µC – Micro Controller
LED - Light Emitting Diode
POT – Potentiometer
SMPS – Switch Mode Power Supply
ISM – Industrial, scientific and medical
USB – Universal serial bus
SPI – Serial Peripheral Interface
I2C – Inter-Integrated Circuit
GPIO – General Purpose Input Output
API – Application Program Interface
UART - Universal asynchronous receiver-transmitter
PWM – Pulse Width Modulation
ULP – Ultra Low Power Processor
MS – Micro Step
RST – Reset
SLP - Sleep

iii

ABSTRACT

Machines can perform highly repetitive tasks better than humans. Worker
fatigue on assembly lines can result in reduced performance, and cause challenges
in maintaining product quality. An employee who has been performing an
inspection task over and over again may eventually fail to recognize the colour of
product. Automating many of the tasks in the industries may help to improv the
efficiency of manufacturing system. The purpose of this prototype is to design and
implement a system which automatically separates products based on their colour.
This machine consists of four parts: rotating platform, colour sensor servo motor
and stepper motor. The output and input of these part was interfaced using
Arduino/Node MCU/ ESP32 microcontroller

Sorting of products is a very difficult industrial process. Continuous
manual sorting creates consistency issues. This prototype designed for automatic
sorting of objects based on the colour. TCS230 sensor will be used to detect the
colour of the product and the microcontroller will be used to control the overall
process. The identification of the colour is based on the frequency analysis of the
output of TCS230 sensor. One rotating platform will be used to bring the product
in front of the colour sensor which is controlled by the stepper motor. After
recognizing the colour of the product one servo motor is used to place the product
in separate compartments. The experimental results promise that the prototype
will fulfil the needs for higher production and precise quality in the field of
automation.

1

CHAPTER 1
(Introduction)

2

 1.1 INTRODUCTION

 The project intends to design and implement an “Color Sorting Machine using Micro-
Controller” using position control mechanism and color sensing technology with the help of
Micro-Controller (ESP-32). A prototype has been developed to illustrate the project. In this project
the stepper motor brings the color discs from the holder to exact top position of the color sensor
TSC230. The color sensor TSC230 identify the color of the disc and send the RGB value of the
color to the microcontroller. The microcontroller then identifies the color from the pre define value
and instructs the servo motor to rotate the sliding platform to the respective color pot. In the sext
rotation of the stepper motor the disc fall down to the particular color pot.

The developed prototype consists of the following main section.

 Disc holder – it holds the color disc in the vertical position just above the rotating disc
positioner.

 disc positioner – it brings the color discs from the holder and place it exactly above the
color sensor TSC230

 Stepper motor – it moves the disc positioner
 Servo motor – it controls the sliding platform so that the discs can accumulate to the correct

color pot
 Control board – it consists of ESP32 microcontroller, stepper motor driver, voltage

regulator etc. The heart of the project. Controls the stepper motor, servo motor and the
color sensor TSC230.

 Color sensor – this sensor senses the color of any object and break it the RGB value

1.2 Color sorting process

In the cutting-edge-day scenario of competitive manufacturing in commercial zone performance of
manufacturing holds the important component for achievement. It's miles essential to beautify
manufacturing pace, lower the labour charge and reduce the breakdown time of production gadget.
Merchandise should be taken care of in numerous ranges of manufacturing and manual sorting is
time consuming and labour extensive. This project discusses about the automatic sorting tool
which helps the sorting mechanism to kind based at the coloration. For sensing TCS230 coloration
sensor has been used. With the aid of reading the frequency of the output of the sensor, colour
primarily based absolutely sorting is completed. Layout of an innovative prototype referred to as
item sorting system by means of spotting the only of a kind shade of the item has been leader goal
of the challenge. Accumulating the objects from the hopper and distributes those objects to their
accurate area based on their coloration even they'll be unique in coloration. Many paintings
environments aren't suitable for manual sorting and a few areas are risky for humans to paintings
on. This prototype is built as a simple digital gadgets like microcontroller for processing, Servo
motors for actions and coloration sensor for recognizing exclusive-coloured devices.

As the name suggests, colour sorting is simply to sort the things according to their colour. It can
be easily done by seeing it but when there are too many things to be sorted and it is a repetitive
task then automatic colour sorting machines are very useful. These machines have colour sensor
to sense the colour of any objects and after detecting the colour servo motor grab the thing and put
it into respective pot. They can be used in different application areas where colour identification,
colour distinction and colour sorting are important. Some of the application areas include
Agriculture Industry (Grain Sorting on the basis of colour), Food Industry, Diamond and Mining
Industry, Recycling etc. The applications are not limited to this and can be further applied to
different industries.

3

The operation of colour sorting starts with a stepper motor. The function of the motor is to collect
the colour disc from a disc holder and put the colour disc above the colour sensor TSC230. The
sensor senses the colour and break the colour in RGB values and then fed the RGB values to the
microcontroller. The controller identifies the colour based on RGB values and direct the stepper
motor to position the sliding platform to the respective colour pot. The colour disc slides down to
the respective colour pot in the next rotation of the stepper motor. Block diagram of system is as
shown in Fig 1.

Figure 1: Basic blocks of the colour sensing and sorting process

1.3 Overview and benefits

Maintained measurement and control in manufacturing processes helps facilitate a business overall
success. That’s easier said than done, though. Overseeing the regulation of a large variety of
processes can be extremely overwhelming. That’s where the implementation of process control
instrumentation comes in.

The colour sorting machine mainly developed using high speed colour sensing sensor, conveyor
belt and driving mechanism. It includes much cost. The same can be developed using synchronized
process control which eliminates the use of the driving mechanism and conveyor belt. The cost
also reduces much in this process.

Although process control technology has advanced rapidly since the mid-1980s, the latest systems
still follow the traditional hierarchical or pyramid-like structure. The lowest level of the pyramid
works to make sure a particular process doesn't vary by more than an allowed amount. It monitors
the operation of each part of the process, identifies unwanted changes and initiates any necessary
corrective actions. Lower-level controls can't handle complex situations like equipment faults.
These have to be dealt with either manually, by an operator, or by other controls at a higher level
of the hierarchy. Further up the pyramid the system controls the overall production process and
makes sure it continues to operate efficiently.

Process control systems are central to maintaining product quality. Using proper instrumentation,
control systems maintain the proper ratio of ingredients. Without this standard of control, products
would vary and quality would be impaired. With improved quality comes higher levels of safety
too. The process control systems automatically warn you of any abnormalities which minimizes
the risk of accidents. By shifting focus to cost-effective and objective-reaching technologies, the
ability to take on more work will increase significantly.

1.4 Organisation of thesis

The thesis is organised into seven chapters including the chapter of introduction. Each
chapter is different from the other and is described along with the necessary theory required
to comprehend it.

4

Chapter 2 deals with the literature reviews. From this chapter we can see before our project
who else works on this topic and how our project is different and advance from those
projects.
Chapter 3 deals with the theory required to do the project. The basic of process control with
microcontroller and the interfacing of the stepper motor, TSC230 colour sensor and servo
motor are described here. The overview of the project and software simulation of the project
is also listed in this chapter.

Chapter 4 deals with the hardware modelling of the projects. The main features,
photographs, step by step operation of the prototype, component listing and the hardware
interfacing of the required components are described here.

Chapter 5 describes the basic operation of the circuit. A flow chart is presented on the actions
that would take in the controller beginning from the positioning of the bottles and filling it.
Advantages and disadvantages and cost estimation are listed in this chapter.

Chapter 6 concludes the work performed so far. The possible limitations in proceeding
research towards this work are discussed. The future work that can be done in improving the
current scenario is mentioned. The future potential along the lines of this work is also
discussed.

Chapter 7 References are listed in this chapter

Appendix A, B & C Hardware description, software coding and datasheets are listed here.

5

CHAPTER 2
(Literature Review)

6

[1] Ch. Shravani, G. Indira, V. Appalaraju, “Arduino Based Color Sorting Machine using
TCS3200 Color Sensor”, International Journal of Innovative Technology and Exploring
Engineering (IJITEE), ISSN: 2278-3075, Volume-8, Issue- 6S4, April 2019.

Sorting of object is an essential mechanical process in which difficult work is quite required.
Chronic manual arranging makes consistency troubles. Machines can perform mainly dreary
assignments superior to human beings. Laborer exhaustion on sequential manufacturing
structures can result in decreased execution, and purpose troubles in retaining up object fine. A
employee who has been appearing research undertaking over and over may additionally in the
end forget about to recognize the color of item, but a machine in no way. On this paper a
compact record close to arranging of articles based totally on shading has been implemented
making use of TCS3200 shading sensor with SERVOMOTORS associated with AURDINO
UNO.

[2] K.Sasidhar, Shahwar Farooqi, Mohammed Abdul Moin, M Sachin, “Design and
Development of a Colour Sorting Machine using PLC and SCADA”, International Journal
of Research and Scientific Innovation (IJRSI), Volume V, Issue VII, July 2018, ISSN 2321–
2705.

The purpose of this project is to present a Programmable Logic Control (PLC) and SCADA
based control system that is applied to the Colour Sorting Machine. In many industrial
applications, there is a need of sorting. Sorting can be done by using many ways according to
the dimensions, colours, weight, using machine vision (image processing), material of an object
etc. For example, in Thermal Power Station, electromagnetic sorting technique is used to sort
ferromagnetic materials from coal. This project consists of components such as PLC, SCADA
software, conveyors, colour sensors, electronic system and motors. The objects are being sorted
according to their respective colour. The main conveyor is supported of two branches to load
the distinguished object on to the respective one as separated by the electronic system and
detected by the proximity sensors. In this project, SCADA provides a user-friendly
environment to establish an easy communication between humans and process. SCADA shows
the activation of various parts of the system, i.e. conveyors, motors, LDRs and electronic
devices.

[3] Kunhimohammed C. K, Muhammed Saifudeen K. K, Sahna S, Gokul M. S and Shaeez
Usman Abdulla, “Automatic Color Sorting Machine Using TCS230 Color Sensor And PIC
Microcontroller”, International Journal of Research and Innovations in Science and
Technology, Volume 2, Issue 2, 2015, ISSN(Online): 2394-3858 ISSN(Print) : 2394-3866.

Sorting of products is a very difficult industrial process. Continuous manual sorting creates
consistency issues. This paper describes a working prototype designed for automatic sorting of
objects based on the color. TCS230 sensor was used to detect the color of the product and the
PIC16F628A microcontroller was used to control the overall process. The identification of the
color is based on the frequency analysis of the output of TCS230 sensor. Two conveyor belts
were used, each controlled by separate DC motors. The first belt is for placing the product to be
analyzed by the color sensor, and the second belt is for moving the container, having separated
compartments, in order to separate the products. The experimental results promise that the
prototype will fulfill the needs for higher production and precise quality in the field of
automation.

7

[4] Aung Thike, Zin Zin Moe San, Dr. Zaw Min Oo, “Design and Development of an
Automatic Color Sorting Machine on Belt Conveyor”, International Journal of Science
and Engineering Applications Volume 8–Issue 07,176-179, 2019, ISSN: -2319–7560.

Automatic color sorting is very much convenient in industry. Color and size are the most
important features for accurate classification and sorting of product which can be done by
using some optical sensors or analyzing their pictures. Color sorting machines are machines
that are used on the production lines in bulk food processing and other industries. They
separate items by their colors, detecting the colors if things that pass before them and using
mechanical or pneumatic ejection devices to divert items whose colors do not fall within the
acceptable range. The Color sorting machine using Arduino is a fascinating and renowned
project for techies, who would like to combine electronics, machine building and
programming. The Color Sorting Machine is used for sorting mainly RGB colors. A simple
robot arm is used to apply a color sorting to a physical system. The objects are placed to the
conveyor belt using robot arm with servo motors. One conveyor belt is used, which is
controlled by DC motors.

[5] Aye Myat Myat Myo, Zar Chi Soe, “Automatic Color Sorting Machine Using Arduino

Mega Microcontroller”, International Journal of Latest Technology in Engineering,
Management & Applied Science (IJLTEMAS), Volume VIII, Issue VIII, August 2019,
ISSN 2278-2540.

In this digital world, color processing gives us a greater impact in different industries to solve
the consistency issue of continuous manual sorting. This paper will be a new approach to
recognize and sort the objects continuously and keep them in a designated location.
Nowadays, image or colors processing attract massive attention as it leads to possibility of
widening scope of application in different field with the help of modern technology. A color
sorter is researched, designed and created with Arduino Mega microcontroller, TCS230 color
sensor, servo motor and other electronic components. This work involves sensors that sense
the object’s color and sends the signal to the Arduino. The microcontroller sends signal to
circuit which drives the various motors to allow the object and place it in the specified
location. Based upon the detection, the hole moves to the specified location, releases the
object and comes back to the original position. The system has the ability to sort the object
according to their colors into respective color station in minimum time.

[6] Lim Jie Shen, Irda Hassan, “Design and development of colour sorting robot”, Journal of
Engineering Science and Technology EURECA 2014 Special Issue January (2015) 71– 81,
© School of Engineering, Taylor’s University.

This paper shows a new approach for continuous recognition and sorting of objects into
desired location. Image or colours processing nowadays attract massive attention as it leads to
possibility of widening scope of application in different field with the help of modern
technology. A colour sorting robot is researched, designed and created with Arduino Uno
microcontroller, TCS3200D Colour Sensor, SG90 Tower Pro Servo Motor and other
electronic components. The system has the ability to sort the object according to their colours
into respective colour station in minimum time. Specific programming code for this system is
written.

8

[7] Dharmannagari Vinay Kumar Reddy, “Sorting of objects based on colour by pick and place
robotic arm and with conveyor belt arrangement”, International Journal of mechanical
engineering and robotic research (IJMERR), Vol. 3, No. 1, January 2014, ISSN 2278 –
0149.

In many situations, autonomous robots can provide effective solutions to grueling tasks. In
this case, it is desirable to create an autonomous robot that can identify objects from the
conveyor belt and relocate them if the object meets certain criteria. Dealing with a large
number of objects is a very menial task, this is an excellent application for a robot of this
type. In this case, to keep costs and design complexity low, the robot is designed around the
platform and uses several different sensors to collect information about the robots
environment to allow the robot to react accordingly. This paper aims at the problem I am
attempting to solve is to create an autonomous robot that can identify objects when placed on
the conveyor belt based on color sensing and then sort by relocating them to a specific
location. It will be using a picking arm which uses a controller motor to pick the particular
object from the conveyor belt and place it according to the color sensing. Micro controller
(AT89S52) allows dynamic and faster control. Liquid Crystal Display (LCD) makes the
system user-friendly. AT89S52 Micro controller is the heart of the circuit as it controls all the
functions.

[8] Mr.V.A.Aher, Mayur Dukre, Ganesh Abhang, Trupti Thorat, “Colour based object sorting
machine”, International Research Journal of Engineering and Technology (IRJET),
Volume 08, Issue 02, Feb 2021, ISSN(print): 2395-0072, ISSN(online): 2395-0056.

Sorting is a process in which two or more objects of similar, yet different characteristics are
arranged in a systematic order. This is generally carried through manually or by using sensors
in automation. Automatic color sorting is very much convenient in industry. Color and size
are the most important features for accurate classification and sorting of product which can be
done by using some optical sensors or analyzing their pictures. Color sorting machines are
machines that are used on the production lines in bulk food processing and other industries.
They separate items by their colors, detecting the colors if things that pass before them and
using mechanical or pneumatic ejection devices to divert items whose colors do not fall
within the acceptable range. The Color sorting machine using microcontroller is a fascinating
and renowned project for techies, who would like to combine electronics, machine building
and programming. The Color Sorting Machine is used for sorting mainly RGB colors. A
simple robot arm is used to apply a color sorting to a physical system. The objects are placed
to the conveyor belt using robot arm with servo motors. One conveyor belt is used, which is
controlled by DC motors.

9

CHAPTER 3
(Theory)

10

3.1 Microcontroller (MCU):

A microcontroller is a compact integrated circuit designed to govern a specific operation in
an embedded system. A typical microcontroller includes a processor, memory and input/output (I/O)
peripherals on a single chip.

3.1.1 How do microcontrollers work?

A microcontroller is embedded inside of a system to control a singular function in a device. It does
this by interpreting data it receives from its I/O peripherals using its central processor. The temporary
information that the microcontroller receives is stored in its data memory, where the processor
accesses it and uses instructions stored in its program memory to decipher and apply the incoming
data. It then uses its I/O peripherals to communicate and enact the appropriate action.

Microcontrollers are used in a wide array of systems and devices. Devices often utilize multiple
microcontrollers that work together within the device to handle their respective tasks.

3.1.2 What are the elements of a microcontroller?

The core elements of a microcontroller are:

1. The processor (CPU) -- A processor can be thought of as the brain of the device. It processes
and responds to various instructions that direct the microcontroller's function. This involves
performing basic arithmetic, logic and I/O operations. It also performs data transfer
operations, which communicate commands to other components in the larger embedded
system.

2. Memory -- A microcontroller's memory is used to store the data that the processor receives
and uses to respond to instructions that it's been programmed to carry out. A microcontroller
has two main memory types:

3. Program memory, which stores long-term information about the instructions that the CPU
carries out. Program memory is non-volatile memory, meaning it holds information over time
without needing a power source.

4. Data memory, which is required for temporary data storage while the instructions are being
executed. Data memory is volatile, meaning the data it holds is temporary and is only
maintained if the device is connected to a power source.

 I/O peripherals -- The input and output devices are the interface for the processor to the outside

world. The input ports receive information and send it to the processor in the form of binary data.

The processor receives that data and sends the necessary instructions to output devices that

execute tasks external to the microcontroller.

Other supporting elements of a microcontroller include:

 Analog to Digital Converter (ADC) -- An ADC is a circuit that converts analog signals to digital

signals. It allows the processor at the center of the microcontroller to interface with external

analog devices, such as sensors.

 Digital to Analog Converter (DAC) -- A DAC performs the inverse function of an ADC and

allows the processor at the center of the microcontroller to communicate its outgoing signals to

external analog components.

11

 System bus -- The system bus is the connective wire that links all components of the

microcontroller together.

 Serial port -- The serial port is one example of an I/O port that allows the microcontroller to

connect to external components. It has a similar function to a USB or a parallel port but differs in

the way it exchanges bits.

3.1.3 Microcontroller features

 A microcontroller's processor will vary by application. Options range from the simple 4-bit, 8-bit

or 16-bit processors to more complex 32-bit or 64-bit processors. Microcontrollers can use

volatile memory types such as random access memory (RAM) and non-volatile memory types --

this includes flash memory, erasable programmable read-only memory (EPROM) and electrically

erasable programmable read-only memory (EEPROM).

 Generally, microcontrollers are designed to be readily usable without additional computing

components because they are designed with sufficient onboard memory as well as offering pins

for general I/O operations, so they can directly interface with sensors and other components.

3.1.4 Microcontroller applications

Microcontrollers are used in multiple industries and applications, including in the home and enterprise,
building automation, manufacturing, robotics, automotive, lighting, smart energy, industrial
automation, communications and internet of things (IoT) deployments.

One very specific application of a microcontroller is its use as a digital signal processor. Frequently,
incoming analog signals come with a certain level of noise. Noise in this context means ambiguous
values that cannot be readily translated into standard digital values. A microcontroller can use its ADC
and DAC to convert the incoming noisy analog signal into an even outgoing digital signal.

Figure 2: ESP 32 Microcontroller

3.1.5 Microcontrollers vs. microprocessors

The distinction between microcontrollers and microprocessors has gotten less clear as chip density and
complexity has become relatively cheap to manufacture and microcontrollers have thus integrated
more "general computer" types of functionalities. On the whole, though, microcontrollers can be said
to function usefully on their own, with a direct connection to sensors and actuators, where
microprocessors are designed to maximize compute power on the chip, with internal bus connections

12

(rather than direct I/O) to supporting hardware such as RAM and serial ports. Simply put, coffee
makers use microcontrollers; desktop computers use microprocessors.

3.2 ESP32 microcontroller

ESP32 is created by Espressif Systems with a series of SoC (System on a Chip) and modules which
are low cost with low power consumption.

This new ESP32 is the successor to the well-known ESP8266(became very popular with its inbuilt
WiFi). ESP32 not only has Built in WiFi but also has Bluetooth and Bluetooth Low Energy. In other
words, we can define ESP32 as “ESP8266 on Steroids”.

ESP32 chip ESP32-D0WDQ6 is based on a Tensilica Xtensa LX6 dual core microprocessor with an
operating frequency of up to 240 MHz.

The small ESP32 package has a high level of integrations such as:

 Antenna switches
 Balun to control RF
 Power amplifier
 Low noise reception amplifier
 Filters and power management modules

On top of all that, it achieves very low power consumption through power saving features
including clock synchronization and multiple modes of operation. The ESP32 chip’s quiescent current
is less than 5 μA which makes it the ideal tool for your battery powered projects or IoT applications.

3.2.1 ESP32 Functional Blocks and Features

Although in the previous table you can notice some main technical characteristics of the ESP32, the
truth is not everything is in the table. In fact, many details are missing. To get to know all the features
of this magnificent SoC it is necessary to refer

 ESP32 Technical Datasheet

 ESP32 Technical Reference Manual

3.2.2 ESP32 Architectural Block diagram

Below is the Architectural block diagram of ESP32 which shows all the functional blocks of
ESP32 SOC.

13

Figure 3: ESP32 Architectural Block diagram

3.2.3 ESP32 Core

As we have already mentioned that the ESP32 has dual core low-power Tensilica Xtensa 32-bit
LX6 microprocessors.

Memory

In most of the microcontrollers based on Arduino, there are three types of memories:

 Program memory: to store the sketch.

 SRAM memory: to store the variables that are used in the code.

 EEPROM memory: to store variables that do not lose their value even when the device is
turned off.

Figure 4: ESP32 memory Block diagram

It can be observed from the above core block image, it has an ultra-low-power co-processor that is
used to perform analog-digital conversions and other operations while the device is operating in deep
sleep low-power mode. In this way, a very low consumption by the SoC is achieved.

It is important to note that these processors offer great typical advantages of a digital signal processor:

14

 Operating frequency: 240 MHz (executes instructions 15 times faster than an Arduino UNO
board)

 It allows to perform operations with real numbers (numbers with commas) very efficiently.

 Allows you to multiply large numbers instantly.

In ESP32 this does not happen, in fact there are more types of memories that are usually classified into
internal and external.

The internal memories are those that are already included in the SoC, and the external are those that
can be added to expand the capacity of the system.

Many ESP32- based development boards add external memory for a better performing system.

3.2.4 ESP32 Internal memories and their functions:

 ROM memory (448 KiB): this memory is write-only, that is, you cannot reprogram it. This is
where the codes that handle the Bluetooth stack, the Wi-Fi physical layer control, some general-
purpose routines, and the bootloader to start the code from external memory are stored.

 Internal SRAM memory (520 KiB): this memory is used by the processor to store both data and
instructions. Its advantage is that it is much easier for the processor to access than the external
SRAM.

 RTC SRAM (16 KiB): this memory is used by the co-processor when the device operates in deep
sleep mode.

 Efuse (1 Kilobit): 256 bits of this memory are used by the system itself and the remaining 768
bits are reserved for other applications.

 Flash embedded (Embedded flash): This memory is where our application code is stored. The
amount of memory varies depending on the chip used:
0 MB (chips ESP32-D0WDQ6, ESP32-D0WD, ESP32-S0WD)
2 MB (chip ESP32-D2WD)
4 MB (Chip ESP32-PICO-D4)

For ESP32s that do not have embedded memory or simply when memory is insufficient for your
application, it is possible to add more memory externally:

 Up to 16 MB of external flash memory can be added. This way you can develop more complex
applications.

 It also supports up to 8 MB of external SRAM memory.

Therefore, it is difficult for you to find yourself limited in memory when implementing an application

using this platform.

3.2.5 ESP32 Pinout diagram and Pins

It can be seen from the above image of ESP32 WROOM module pinout diagram, all the different
types of pins are mentioned in different colors which we are going to explain in detail below.

Digital pins

The ESP32 has a total of 34 digital pins. These pins are similar to Arduino digital pins which allows
you to add LED display, OLED display, sensors, buttons, buzzers, etc. to our projects.

15

Most of these pins support the use of internal pull-up, pull-down, and high impedance status as well.
This makes them ideal for connecting buttons and matrix keyboards, as well as for applying LED
control techniques such as the well-known Charlieplexing.

ESP32 WROOM module has 25 GPIO pins out of which there are only input pins, pins with input
pull up and pins without internal pullup.

Maximum current drawn per a single GPIO is 40mA according to the “Recommended Operating
Conditions” section in the ESP32 datasheet.

Input only pins:

 GPIO 34

 GPIO 35

 GPIO 36

 GPIO 39

Pins with pull up INPUT_PULLUP

 GPIO14

 GPIO16

 GPIO17

 GPIO18

 GPIO19

 GPIO21

 GPIO22

 GPIO23

Pins without internal pull up

 GPIO13

 GPIO25

 GPIO26

 GPIO27

 GPIO32

 GPIO33

ADC (Analog to digital converters)

Some of the pins listed in the pinout diagram can also be used to interact with analog sensors, same
as analog pins of an Arduino board.

For this, the ESP32 has a 12-bit (0-4096 resolution which means when voltage observed is 0 the value
is 0 and when max voltage like 3.3v is observed the value goes to 4096), 18-channel analog to digital
converter, which means you can take readings from up to 18 analog sensors.

This allows you to develop very compact connected applications, even when using multiple analog
sensors.

Analog input pins:

16

 ADC1_CH0 (GPIO 36)

 ADC1_CH1 (GPIO 37)

 ADC1_CH2 (GPIO 38)

 ADC1_CH3 (GPIO 39)

 ADC1_CH4 (GPIO 32)

 ADC1_CH5 (GPIO 33)

 ADC1_CH6 (GPIO 34)

 ADC1_CH7 (GPIO 35)

 ADC2_CH0 (GPIO 4)

 ADC2_CH1 (GPIO 0)

 ADC2_CH2 (GPIO 2)

 ADC2_CH3 (GPIO 15)

 ADC2_CH4 (GPIO 13)

 ADC2_CH5 (GPIO 12)

 ADC2_CH6 (GPIO 14)

 ADC2_CH7 (GPIO 27)

 ADC2_CH8 (GPIO 25)

 ADC2_CH9 (GPIO 26)

DAC (Digital to Analog Converters)

PWM signals are used on most Arduino boards to generate analog voltages. The ESP32 has two 8 bits
digital to analog converters.

This allows two pure analog voltage signals to be generated. These converters can be used to:

 Control an analog circuit
 Manipulate the intensity of an LED
 Can even add a small amp and speaker to your project to play a song.

DAC Pins:

 DAC1 (GPIO25)
 DAC2 (GPIO26)

Capacitive Touch GPIOs

In case if somebody wants to develop applications with no mechanical buttons, they can use the touch
sensitive pins on ESP32s to achieve it.

These pins are capable of detecting the small variations produced when approaching a finger to the pin.
In this way, it is possible to create all kinds of controls such as buttons or slide bars without the need for
mechanical components.

Capacitive Touch pins:

 T0 (GPIO 4)

 T1 (GPIO 0)

17

 T2 (GPIO 2)

 T3 (GPIO 15)

 T4 (GPIO 13)

 T5 (GPIO 12)

 T6 (GPIO 14)

 T7 (GPIO 27)

 T8 (GPIO 33)

 T9 (GPIO 32)

RTC

As we already learnt about the RTC GPIO support in the core section. The GPIOs which are routed to
the RTC low-power management subsystem can be used when the ESP32 is in deep sleep. These RTC
GPIOs can be used to wake up the ESP32 from deep sleep when the Ultra-Low Power (ULP) co-
processor is running. The following GPIOs can be used as an external wake up source.

 RTC_GPIO0 (GPIO36)

 RTC_GPIO3 (GPIO39)

 RTC_GPIO4 (GPIO34)

 RTC_GPIO5 (GPIO35)

 RTC_GPIO6 (GPIO25)

 RTC_GPIO7 (GPIO26)

 RTC_GPIO8 (GPIO33)

 RTC_GPIO9 (GPIO32)

 RTC_GPIO10 (GPIO4)

 RTC_GPIO11 (GPIO0)

 RTC_GPIO12 (GPIO2)

 RTC_GPIO13 (GPIO15)

 RTC_GPIO14 (GPIO13)

 RTC_GPIO15 (GPIO12)

 RTC_GPIO16 (GPIO14)

 RTC_GPIO17 (GPIO27)

SD / SDIO / MMC driver

This peripheral allows the ESP32 to interact with SD and MMC cards directly. In fact, by combining
this controller with the analog digital converter it is possible to improve our little audio player.

UART

Many microcontrollers have UART modules, which on Arduino are known as Serial ports. These allow
asynchronous communications between two devices using only two pins.

The ESP32 has three UART ports:

 UART0

 UART1

18

 UART2

All of these are compatible with RS-232, RS-485 and IrDA protocols.

I2C

The ESP32 have two interfaces I2C or TWI that support the operating modes master and slave. Its
features include:

 Standard mode (100 Kbit/s)

 Fast mode (400 Kbit/s)

 7 and 10 bit addressing

I2C Pins

 GPIO 21 (SDA)

 GPIO 22 (SCL)

SPI

The ESP32 also has SPI communication. It has three fully functional buses:

 Four transfer modes: this means that it is compatible with all or almost all SPI and QSPI devices
available on the market.

 All SPI ports are capable of high speeds (theoretically up to 80 MHz).
 64-byte buffer for transmission and reception.

By default, the pin mapping for SPI is:

Table 1: SPI Pin Mapping

SPI MOSI MISO CLK CS
VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5
HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15

Infrared remote controller

The ESP32 also allows the transmission and reception of signals using various infrared protocols (the
same as those used by the television remote).

Therefore, you can also use your ESP32 to create your own remote control that allows you to interact
with your TV or your stereo.

PWM

Like the ESP8266, the ESP32 also supports the use of analog outputs using PWM. The big difference
is in ESP32 it is possible to use up to 16 pins as PWM outputs where ESP8266 only supports 8 and
Arduino UNO board that only supports 6.

PWM pins:

All the PWM pins are indicated with the below symbol in the ESP32 Pinout Diagram above.

19

3.2.6 How to select an ESP32 development board?

Before selecting an ESP32 development board, you need to take into account certain aspects:

 Pin numbers and configuration: it is important to have access to the board’s pinout in
order to make correct use of it.

 Serial -USB interface and voltage regulator: These two features are found in practically
all development boards. These are the ones that allow the board to be connected directly to
the computer to be energized and programmed.

 Battery connector: if you are thinking of venturing into low-consumption systems with
batteries, you can opt for boards that already include battery connectors.

 Extra functions: many development boards for ESP32 come with extra features such as
cameras, OLED displays, LoRa modules, etc.

3.3 Installing ESP32 Add-on in Arduino IDE

To install the ESP32 board in your Arduino IDE, follow these next instructions:

1. In your Arduino IDE, go to File> Preferences

2. Enter the following into the “Additional Board Manager URLs” field:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Then, click the “OK” button:

20

3. Open the Boards Manager. Go to Tools > Board > Boards Manager…

4. Search for ESP32 and press install button for the “ESP32 by Espressif Systems“:

21

5. That’s it. It should be installed after a few seconds.

3.4 Stepper Motor Basics

A stepper motor is an electric motor whose main feature is that its shaft rotates by performing steps,
that is, by moving by a fixed number of degrees. This feature is obtained thanks to the internal structure
of the motor, and allows to know the exact angular position of the shaft by simply counting how may
steps have been performed, with no need for a sensor. This feature also makes it fit for a wide range
of applications.

22

3.4.1 Stepper Motor Working Principles

As all with electric motors, stepper motors have a stationary part (the stator) and a moving part (the
rotor). On the stator, there are teeth on which coils are wired, while the rotor is either a permanent
magnet or a variable reluctance iron core. We will dive deeper into the different rotor structures
later. Figure 5 shows a drawing representing the section of the motor is shown, where the rotor is a
variable-reluctance iron core.

Figure 5: Cross-Section of a Stepper Motor

The basic working principle of the stepper motor is the following: By energizing one or more of the
stator phases, a magnetic field is generated by the current flowing in the coil and the rotor aligns with
this field. By supplying different phases in sequence, the rotor can be rotated by a specific amount to
reach the desired final position. Figure 6 shows a representation of the working principle. At the
beginning, coil A is energized and the rotor is aligned with the magnetic field it produces. When coil
B is energized, the rotor rotates clockwise by 60° to align with the new magnetic field. The same
happens when coil C is energized. In the pictures, the colors of the stator teeth indicate the direction
of the magnetic field generated by the stator winding.

Figure 6: Stepper Motor Steps

3.4.2 Stepper Motor Control

We have seen previously that the motor coils need to be energized, in a specific sequence, to
generate the magnetic field with which the rotor is going to align. Several devices are used to supply
the necessary voltage to the coils, and thus allow the motor to function properly. Starting from the
devices that are closer to the motor we have:

23

 A transistor bridge is the device physically controlling the electrical connection of the motor
coils. Transistors can be seen as electrically controlled interrupters, which, when closed allow
the connection of a coil to the electrical supply and thus the flow of current in the coil. One
transistor bridge is needed for each motor phase.

 A pre-driver is a device that controls the activation of the transistors, providing the required
voltage and current, it is in turn controlled by an MCU.

 An MCU is a microcontroller unit, which is usually programmed by the motor user and generates
specific signals for the pre-driver to obtain the desired motor behavior.

Figure 7 shows a simple representation of a stepper motor control scheme. The pre-driver and the
transistor bridge may be contained in a single device, called a driver.

Figure 7: Motor Control Basic Scheme

3.4.3 Stepper Motor Driver Types

There are different stepper motor drivers available on the market, which showcase different
features for specific applications. The most important characteristics include the input interface.
The most common options are:

 Step/Direction – By sending a pulse on the Step pin, the driver changes its output such that the
motor will perform a step, the direction of which is determined by the level on the Direction pin.

 Phase/Enable – For each stator winding phase, Phase determines the current direction and
triggers Enable if the phase is energized.

 PWM – Directly controls the gate signals of the low-side and high-side FETs.

Another important feature of a stepper motor driver is if it is only able to control the voltage across the
winding, or also the current flowing through it:

24

 With voltage control, the driver only regulates the voltage across the winding. The torque
developed and the speed with which the steps are executed only depend on motor and load
characteristics.

 Current control drivers are more advanced, as they regulate the current flowing through the active
coil in order to have better control over the torque produced, and thus the dynamic behavior of
the whole system.

Unipolar/Bipolar Motors

Another feature of the motor that also affects control is the arrangement of the stator coils that determine
how the current direction is changed. To achieve the motion of the rotor, it is necessary not only to
energize the coils, but also to control the direction of the current, which determines the direction of the
magnetic field generated by the coil itself.

 3.4.4 Stepper Motor Uses and Applications

Due to their properties, stepper motors are used in many applications where a simple position control
and the ability to hold a position are needed, including:

 3D printing equipment
 Textile machines
 Printing presses
 Gaming machines
 Medical imaging machinery
 Small robotics
 CNC milling machines
 Welding equipment

While these applications are the most common, they’re a fraction of what stepper motors can be used
for. Generally speaking, any application that requires highly accurate positioning, speed control, and
low speed torque can benefit from the use of stepper motors.

3.5 A4988 Stepper Motor Driver Chip

At the heart of the module is a Micro stepping Driver from Allegro – A4988. It’s small in stature
(only 0.8″ × 0.6″) but still packs a punch.

Figure 8: Stepper Motor Driver A4988

25

The A4988 stepper motor driver has output drive capacity of up to 35 V and ± 2A and lets you control
one bipolar stepper motor at up to 2A output current per coil like NEMA 17.

The driver has built-in translator for easy operation. This reduces the number of control pins to just 2,
one for controlling the steps and other for controlling spinning direction.

The driver offers 5 different step resolutions viz. full-step, half-step, quarter-step, eighth-step, and

sixteenth-step.

3.5.1 A4988 Motor Driver Pinout

The A4988 driver has total 16 pins that interface it to the outside world. The connections are as follows:

Figure 9: A4988 pin diagram

 Let’s familiarize ourselves with all the pins one by one.

3.5.2 Power Connection Pins

The A4988 actually requires two power supply connections.

Figure 10: A4988 power pins

VDD & GND is used for driving the internal logic circuitry which can be 3V to 5.5 V. Whereas,

26

VMOT & GND supplies power for the motor which can be 8V to 35 V.

According to datasheet, the motor supply requires appropriate decoupling capacitor close to the board,
capable of sustaining 4A. In our project the stepper motor is connected to 12 V. We use 100 µF capacitor
between VMOT & GND.

3.5.3 Micro-step Selection Pins

The A4988 driver allows micro stepping by allowing intermediate step locations. This is achieved by
energizing the coils with intermediate current levels.

For example, if you choose to drive NEMA 17 having 1.8° or 200 steps per revolution in quarter-step
mode, the motor will give 800 micro steps per revolution.

Figure 11: A4988 micro-step pin selection

The A4988 driver has three step size(resolution) selector inputs viz. MS1, MS2 & MS3. By setting
appropriate logic levels to these pins, we can set the motors to one of the five step resolutions.

Table 2: Micro-stepping selection

MS1 MS2 MS3 Micro-step Resolution
Low Low Low Full step
High Low Low Half step
Low High Low Quarter step
High High Low Eighth step
High High High Sixteenth step

These three micro step selection pins are pulled LOW by internal pull-down resistors, so if we leave
them disconnected, the motor will operate in full step mode.

3.5.4 Control Input Pins

The A4988 has two control inputs viz. STEP and DIR.

27

Figure 12: A4988 control pins

STEP input controls the micro-steps of the motor. Each HIGH pulse sent to this pin steps the motor by
number of micro-steps set by Micro-step Selection Pins. The faster the pulses, the faster the motor will
rotate.

DIR input controls the spinning direction of the motor. Pulling it HIGH drives the motor clockwise and
pulling it LOW drives the motor counterclockwise.

3.5.5 Pins for Controlling Power States

The A4988 has three different inputs for controlling its power states viz. EN, RST, and SLP.

Figure 13: A4988 power state control pins

EN Pin is active low input, when pulled LOW (logic 0) the A4988 driver is enabled. By default, this
pin is pulled low so the driver is always enabled, unless you pull it HIGH.
SLP Pin is active low input. Meaning, pulling this pin LOW puts the driver in sleep mode, minimizing
the power consumption. You can invoke this especially when the motor is not in use to conserve
power.
RST is also an active low input. When pulled LOW, all STEP inputs are ignored, until you pull it
HIGH. It also resets the driver by setting the internal translator to a predefined home state. Home state
is basically the initial position from where the motor starts and it’s different depending upon the micro-
step resolution.

28

3.5.6 Output Pins

The A4988 motor driver’s output channels are broken out to the edge of the module with 1B, 1A, 2A

& 2B pins.

Figure 14: A4988 output pins

You can connect any bipolar stepper motor having voltages between 8V to 35 V to these pins.

Each output pin on the module can deliver up to 2A to the motor. However, the amount of current
supplied to the motor depends on system’s power supply, cooling system & current limiting setting.

3.6 Interfacing TCS230/TCS3200 Color Sensor with Node MCU / ESP32

Color sensors provide more reliable solutions to complex automation challenges. They are used in
various industries including the food and beverage, automotive and manufacturing industries for
purposes such as detecting material, detecting color marks on parts, verifying steps in the
manufacturing process and so on.

While expensive color sensors are used in industrial applications, inexpensive sensors such as TCS230
color sensor can be used for less stringent applications.

The TCS230 color sensor (also branded as the TCS3200) is quite popular, inexpensive and easy to
use. Before we use this color sensor in our project, it would be good to see how a color sensor actually
works.

3.6.1 How Color Sensors Work

White light is made up of three primary colors (Red, green and blue), which have different
wavelengths. These colors combine with each other to form different shades of colors.

When white light falls on any surface, some wavelengths of light are absorbed and some are reflected,
depending on the properties of the surface material. The color we see is a result of which wavelengths
are reflected back into our eyes.

29

Figure 15: Color sensing principle

Now coming back to the sensor, a typical color sensor includes a high-intensity white LED that
projects a modulated light onto the object. To detect the color of reflected light, almost all the color
sensors consists of a grid of color-sensitive filter, also known as ‘Bayer Filter‘ and an array of
photodiodes underneath, as shown in the picture below.

Figure 16: Color sensor array

A single pixel is made up of 4 filters, one red, one blue, one green and one clear filter (no filter). This
pattern is also known as the ‘Bayer Pattern’. Each filter passes light of just a single color to the
photodiode beneath, while the clear filter passes light as it is, as shown below. This extra light passed
through the clear filter is a major advantage in low light conditions.

Figure 17: Color sensor filtration

The processing chip then addresses each photodiode (one color at a time), and measures the intensity
of the light. As there is an array of photodiodes, the results are first averaged and then sent out for
processing. By measuring the relative level of red, green and blue light, the color of the object is
determined.

30

3.6.2 TSC230 Color Sensor Module

At the heart of the module is an inexpensive RGB sensor chip from Texas Advanced Optoelectronic
Solutions – TCS230. The TCS230 Color Sensor is a complete color detector that can detect and
measure an almost infinite range of visible colors.

Figure 18: Color sensor module TSC230

The sensor itself can be seen at the center of the module, surrounded by the four white LEDs. The
LEDs light up when the module is powered up and are used to illuminate the object being sensed.
Thanks to these LEDs, the sensor can also work in complete darkness to determine the color or
brightness of the object.

The TCS230 operates on a supply voltage of 2.7 to 5.5 volts and provides TTL logic-level outputs.

3.6.3 TCS230 Operation

The TCS230 detects color with the help of an 8 x 8 array of photodiodes, of which sixteen photodiodes
have red filters, 16 photodiodes have green filters, 16 photodiodes have blue filters, and remaining 16
photodiodes are clear with no filters.

If you look closely at the sensor, you can actually see these filters.

Figure 19: sensor array inside the module

Each 16 photodiodes are connected in parallel, so using two control pins S2 and S3 you can choose
which of them to read. So for example, if you want to detect only red color, you can select 16 red-
filtered photodiodes by setting the two pins to LOW according to the table.

31

Similarly, you can choose different types of photodiodes by different combinations of S2 and S3.

Table 3: Photodiode filter selection

S2 S3 Photodiode type
LOW LOW Red
LOW HIGH Blue
HIGH LOW Clear (No filter)
HIGH HIGH Green

An internal current-to-frequency converter converts readings from photodiodes into a square wave
whose frequency is proportional to the intensity of the chosen color. The range of the typical output
frequency is 2HZ~500KHZ.

The sensor has two more control pins, S0 and S1, which are used for scaling the output frequency.
The frequency can be scaled to three different preset values of 2%, 20% or 100%. This frequency-
scaling function allows the sensor to be used with a variety of microcontrollers and other devices.

Table 4: output frequency scaling

S0 S1 Output frequency scaling
LOW LOW Power down
LOW HIGH 2%
HIGH LOW 20%
HIGH HIGH 100%

One can get different scaling factor by different combinations of S0 and S1. For the Node MCU /
ESP32 most applications use the 20% scaling.

3.6.4 TSC230 Color Sensor Module Pinout

The following diagram shows the pinout of a common TCS230 module.

Figure 20: TSC230 module pinout

GND is a ground pin.
OE is the Output Enable pin. This pin is rarely used and on most modules is permanently enabled. If
not already enabled then pull it LOW.
S0 & S1 pins are used to select the frequency scaling.
S2 & S3 pins are used to select the color array.

32

OUT pin is a TTL level square wave.
VCC pin supplies power to the module. Connect it to the 2.7V to 5.5V power supply.

3.6.5 Wiring TSC230 Color Sensor to Node MCU / ESP32

Hooking up the TSC 230 to a Node MCU / ESP32 is very simple. Every pin is used except the Output
Enable pin, and the module is powered safely from the 5-volt output of the Node MCU / ESP32.

Below is the hookup for the experiments with the TSC230:

Figure 21: Interfacing TSC230 with ESP32

None of the pins used on the Node MCU / ESP32 are critical because the module does not require any
pin-specific features, so if anybody want to use different pins they can do so safely. Just be sure to
change the pin numbers in the code to reflect any changes to the wiring.

Once the sensor is connected to the Node MCU / ESP32 it’s time to write some code!

3.6.6 Calibrating the Sensor

Two sketches are used to work with the TCS230 color sensor.

1. The first sketch (calibration sketch) will help us to obtain the raw data from the sensor.

2. The second sketch (main Node MCU / ESP32 sketch) will use the raw data previously
received to display RGB values for the color being sensed.

both sketches will use the same hardware hookup.

33

Following is the calibration sketch. This sketch addresses the TCS230 sensor color-by-color and reads
the pulse width of the output pin. The output is then displayed on the serial monitor.

Load the sketch to the Node MCU / ESP32 and mount the sensor so that it is facing the objects. Start
by finding a reference object for white and black color. These reference objects will produce readings
at both maximum and minimum values for all three colors.

// Define color sensor pins
#define S0 4
#define S1 5
#define S2 6
#define S3 7
#define sensorOut 8

// Variables for Color Pulse Width Measurements
int redPW = 0;
int greenPW = 0;
int bluePW = 0;

void setup() {
 // Set S0 - S3 as outputs
 pinMode(S0, OUTPUT);
 pinMode(S1, OUTPUT);
 pinMode(S2, OUTPUT);
 pinMode(S3, OUTPUT);

 // Set Pulse Width scaling to 20%
 digitalWrite(S0,HIGH);
 digitalWrite(S1,LOW);

 // Set Sensor output as input
 pinMode(sensorOut, INPUT);

 // Setup Serial Monitor
 Serial.begin(9600);
}

void loop() {
 // Read Red Pulse Width
 redPW = getRedPW();
 // Delay to stabilize sensor
 delay(200);

 // Read Green Pulse Width
 greenPW = getGreenPW();
 // Delay to stabilize sensor
 delay(200);

 // Read Blue Pulse Width
 bluePW = getBluePW();
 // Delay to stabilize sensor
 delay(200);

 // Print output to Serial Monitor
 Serial.print("Red PW = ");
 Serial.print(redPW);
 Serial.print(" - Green PW = ");
 Serial.print(greenPW);
 Serial.print(" - Blue PW = ");
 Serial.println(bluePW);
}

34

// Function to read Red Pulse Widths
int getRedPW() {
 // Set sensor to read Red only
 digitalWrite(S2,LOW);
 digitalWrite(S3,LOW);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

// Function to read Green Pulse Widths
int getGreenPW() {
 // Set sensor to read Green only
 digitalWrite(S2,HIGH);
 digitalWrite(S3,HIGH);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

// Function to read Blue Pulse Widths
int getBluePW() {
 // Set sensor to read Blue only
 digitalWrite(S2,LOW);
 digitalWrite(S3,HIGH);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}
Once upload the sketch will get such readings. Record the readings you get at both extremes.

35

3.6.7 Code Explanation:

The sketch begins with defining the pins used to connect the TSC230. Some variables are also defined
to represent the pulse widths of the red, green and blue color array.

#define S0 4
#define S1 5
#define S2 6
#define S3 7
#define sensorOut 8

int redPW = 0;
int greenPW = 0;
int bluePW = 0;

In the setup, we define the S0-S3 pins as outputs. These pins will be used to select the frequency
scaling and the color we wish to address. The S0 and S1 pins are used to set the frequency scaling to
20%, which is a common value when using this color sensor with an Arduino. Next, The sensors
Output pin is defined as an input to the Arduino, this is where we will receive the square wave. Finally,
we set up the serial monitor.

void setup() {
 // Set S0 - S3 as outputs
 pinMode(S0, OUTPUT);
 pinMode(S1, OUTPUT);
 pinMode(S2, OUTPUT);
 pinMode(S3, OUTPUT);

36

 // Set Pulse Width scaling to 20%
 digitalWrite(S0,HIGH);
 digitalWrite(S1,LOW);

 // Set Sensor output as input
 pinMode(sensorOut, INPUT);

 // Setup Serial Monitor
 Serial.begin(9600);
}

In the loop section, we call three functions getRedPW(), getGreenPW() and getBluePW() to obtain
the pulse width. Let’s examine getRedPW() as an example.

The getRedPW() function gets the red pulse width. It starts by setting the S2 and S3 pins to select the
red filter. This is the only step where this function differs from its green and blue counterparts.

Next, an integer is defined to store the pulse width. The pulse width is then determined using the
Arduino pulseIn() function. This function measures the pulse width, note that we have configured it
to measure the width of the LOW part of the pulse. The result is time in milliseconds. This value is
then returned and the function terminates.

int getRedPW() {
 // Set sensor to read Red only
 digitalWrite(S2,LOW);
 digitalWrite(S3,LOW);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

Back in the loop, we call three functions to read the color pulse widths, adding a delay of 200ms
between them to allow the sensor to stabilize. We then print the values on the serial monitor and repeat
the loop.

void loop() {
 // Read Red Pulse Width
 redPW = getRedPW();
 // Delay to stabilize sensor
 delay(200);

 // Read Green Pulse Width
 greenPW = getGreenPW();
 // Delay to stabilize sensor
 delay(200);

37

 // Read Blue Pulse Width
 bluePW = getBluePW();
 // Delay to stabilize sensor
 delay(200);

 // Print output to Serial Monitor
 Serial.print("Red PW = ");
 Serial.print(redPW);
 Serial.print(" - Green PW = ");
 Serial.print(greenPW);
 Serial.print(" - Blue PW = ");
 Serial.println(bluePW);
}

Arduino Code – Reading RGB Values from the TCS230

Once you have taken your readings you can upload the next sketch where we will read RGB values
from the TCS230 color sensor.

Before uploading the sketch, enter the six calibration values you obtained from the calibration sketch
in the top of the sketch. replace the “0” with your actual values.

// Define color sensor pins
#define S0 4
#define S1 5
#define S2 6
#define S3 7
#define sensorOut 8

// Calibration Values
// *Get these from Calibration Sketch
int redMin = 0; // Red minimum value
int redMax = 0; // Red maximum value
int greenMin = 0; // Green minimum value
int greenMax = 0; // Green maximum value
int blueMin = 0; // Blue minimum value
int blueMax = 0; // Blue maximum value

// Variables for Color Pulse Width Measurements
int redPW = 0;
int greenPW = 0;
int bluePW = 0;

// Variables for final Color values
int redValue;
int greenValue;
int blueValue;

38

void setup() {
 // Set S0 - S3 as outputs
 pinMode(S0, OUTPUT);
 pinMode(S1, OUTPUT);
 pinMode(S2, OUTPUT);
 pinMode(S3, OUTPUT);

 // Set Sensor output as input
 pinMode(sensorOut, INPUT);

 // Set Frequency scaling to 20%
 digitalWrite(S0,HIGH);
 digitalWrite(S1,LOW);

 // Setup Serial Monitor
 Serial.begin(9600);
}

void loop() {
 // Read Red value
 redPW = getRedPW();
 // Map to value from 0-255
 redValue = map(redPW, redMin,redMax,255,0);
 // Delay to stabilize sensor
 delay(200);

 // Read Green value
 greenPW = getGreenPW();
 // Map to value from 0-255
 greenValue = map(greenPW, greenMin,greenMax,255,0);
 // Delay to stabilize sensor
 delay(200);

 // Read Blue value
 bluePW = getBluePW();
 // Map to value from 0-255
 blueValue = map(bluePW, blueMin,blueMax,255,0);
 // Delay to stabilize sensor
 delay(200);

 // Print output to Serial Monitor
 Serial.print("Red = ");
 Serial.print(redValue);
 Serial.print(" - Green = ");
 Serial.print(greenValue);
 Serial.print(" - Blue = ");
 Serial.println(blueValue);

39

}

// Function to read Red Pulse Widths
int getRedPW() {
 // Set sensor to read Red only
 digitalWrite(S2,LOW);
 digitalWrite(S3,LOW);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

// Function to read Green Pulse Widths
int getGreenPW() {
 // Set sensor to read Green only
 digitalWrite(S2,HIGH);
 digitalWrite(S3,HIGH);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

// Function to read Blue Pulse Widths
int getBluePW() {
 // Set sensor to read Blue only
 digitalWrite(S2,LOW);
 digitalWrite(S3,HIGH);
 // Define integer to represent Pulse Width
 int PW;
 // Read the output Pulse Width
 PW = pulseIn(sensorOut, LOW);
 // Return the value
 return PW;
}

Load the sketch and observe the results with samples of different colors. You can make minor
adjustments to calibration values if necessary.

Code Explanation

You will notice that the majority of this sketch is exactly the same as the previous sketch, except:

40

The six calibration values you obtained from the calibration sketch are entered in the top of the sketch.

// Calibration Values
int redMin = 0; // Red minimum value
int redMax = 0; // Red maximum value
int greenMin = 0; // Green minimum value
int greenMax = 0; // Green maximum value
int blueMin = 0; // Blue minimum value
int blueMax = 0; // Blue maximum value
Three new variables are defined for the RGB values we want to output.
int redValue;
int greenValue;
int blueValue;

In the loop section, we read each of the values using the same function used in the previous sketch.
Then we use the Arduino map() function to convert these values into RGB values, using our
calibration values as a reference.

Note that we have reversed the range (Min value is mapped to 255 amd Max value is mapped to 0)
because our functions return pulse width, not frequency.

// Read Red value
redPW = getRedPW();
// Map to value from 0-255
redValue = map(redPW, redMin,redMax,255,0);
// Delay to stabilize sensor
delay(200);

Finally, the output the values on the serial monitor. These final readings will correspond to the RGB
values of the item being scanned.

3.7 Interfacing Servo Motor with ESP32

Servo Motors are one of the most important actuators in the realm of robotics being applied in use
cases from RC planes to automated door locks. Therefore, it is important to know how to interface a
servo motor with ESP32 controller.

3.7.1 Connecting the Servo Motor to the ESP32

Servo motors have three wires: power, ground, and signal. The power is usually red, the GND is black
or brown, and the signal wire is usually yellow, orange, or white.

41

Table 5: Servo motor pin-out

Wire Color
Power Red
GND Black, or brown
Signal Yellow, orange, or white

When using a small servo like the S0009 as shown in the figure below, power it directly from the
ESP32.

But using more than one servo or other type, probably need to power up servos using an external
power supply.

In case of small servo like the S0009, you need to connect:

 GND -> ESP32 GND pin;
 Power -> ESP32 VIN pin;
 Signal -> GPIO 13 (or any PWM pin).

Note: in this case, you can use any ESP32 GPIO, because any GPIO is able to produce a PWM signal.
However, we don’t recommend using GPIOs 9, 10, and 11 that are connected to the integrated SPI
flash and are not recommend for other uses.

3.7.2 Schematic

In our examples we’ll connect the signal wire to GPIO 13. So, you can follow the next schematic
diagram to wire your servo motor.

42

Figure 22: servo interfacing with ESP32

(This schematic uses the ESP32 DEVKIT V1 module version with 36 GPIOs – if you’re using another
model, please check the pinout for the board you’re using.)

3.7.3 How to Control a Servo Motor?

You can position the servo’s shaft in various angles from 0 to 180º. Servos are controlled using a pulse
width modulation (PWM) signal. This means that the PWM signal sent to the motor will determine
the shaft’s position.

To control the motor, you can simply use the PWM capabilities of the ESP32 by sending a 50Hz signal
with the appropriate pulse width. Or you can use a library to make this task much simpler.

3.7.4 Preparing the Arduino IDE

There’s an add-on for the Arduino IDE allows you to program the ESP32 using the Arduino IDE and
its programming language. Follow one of the next tutorials to prepare your Arduino IDE to work with
the ESP32, if you haven’t already.

3.7.5 Installing the ESP32_Arduino_Servo_Library

The ESP32 Arduino Servo Library makes it easier to control a servo motor with your ESP32, using
the Arduino IDE. Follow the next steps to install the library in your Arduino IDE:

1. Download the ESP32_Arduino_Servo_Library. You should have a .zip folder in your
Downloads folder

43

2. Unzip the .zip folder and you should get ESP32-Arduino-Servo-Library-Master folder
3. Rename your folder from ESP32-Arduino-Servo-Library-

Master to ESP32_Arduino_Servo_Library
4. Move the ESP32_Arduino_Servo_Library folder to your Arduino IDE installation libraries

folder
5. Finally, re-open your Arduino IDE

3.7.6 Testing an Example

After installing the library, go to your Arduino IDE. Make sure you have the ESP32 board selected,
and then, go to File > Examples > ServoESP32 > Simple Servo.

#include <Servo.h>
Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards
int pos = 0; // variable to store the servo position
void setup() {
 myservo.attach(13); // attaches the servo on pin 13 to the servo object
}
void loop() {
 for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
 // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

3.7.7 Understanding the code

This sketch rotates the servo 180 degrees to one side, and 180 degrees to the other. Let’s see how it
works.
First, you need to include the Servo library:

#include <Servo.h>

Then, you need to create a servo object. In this case it is called myservo.

Servo myservo;
setup()
In the setup(), you initialize a serial communication for debugging purposes, and attach GPIO 13 to
the servo object.

void setup() {

 myservo.attach(13);
}

44

loop()

In the loop(), we change the motor’s shaft position from 0 to 180 degrees, and then from 180 to 0
degrees. To set the shaft to a particular position, you just need to use the write() method in
the servo object. You pass as an argument, an integer number with the position in degrees.

myservo.write(pos);

3.7.8 Testing the Sketch

Upload the code to your ESP32. After uploading the code, you should see the motor’s shaft rotating
to one side and then, to the other.

 3.8 Overview of the Project:

Figure 23: Overview of the project

This project is the perfect example of sequential process. Without the use of the any sensors the bottles
are filling perfectly. The bottles are placed in the predefine places in the rotating platform with the

45

help of some cylindrical piece of plastic. These piece of plastic holds the bottles in the places securely.
The rotating platform rotates with the help of the stepper motor. The motor moves the platform in
perfect 600 in every step and ensure that the bottles are placed exactly bellow the water pipe. This
process repeats until all the bottles filled up. The whole process is monitored are displayed in the built
in OLED display. Also, a buzzer is attached in the board to give some audio feedback.

 3.9 Circuit Diagram:

Figure 24: Circuit diagram of the developed prototype

46

CHAPTER 4

(Hardware Modeling)

47

4.1 Main features of the prototype

The features of the developed prototype are:

 Automatic, fast and accurate color sorting

 With little modification can be used with any type of color material

 Reduce human-Dependency

 On board stepper motor driver

 On board berg connector for stepper motor, servo and color sensor

 Single power supply and on-board voltage regulator

 Micro stepping option for smooth movement of the motor

4.2 Photographs of the main controller board

Figure 25: Main Controller board

48

4.3 Step by step operation of the prototype

1. Connect the DC adapter (12V, 1A) to the DC socket

2. Voltage Regulator (LM7805) provides 5 Volt input for ESP32, TSC230 and servo motor. 12 v

input directly goes to the stepper motor driver(A4988)

3. The stepper motor rotates 600 and place the color disc above the color sensor

4. TSC230 sense the color of the disc and send the RGB value of the color to the ESP32

5. ESP32 identify the color from the preset value and instruct the servo motor to place the sliding

platform in the correct position

6. In the next rotation of the stepper motor the color disc fall down and slides to the proper color

pot

7. This process repeats until the color disc holder become empty

4.4 Components required

Table 6: Component listing

Sl.
No.

Component Qtn

1. ESP32 1
2. NEMA 17 Stepper Motor 1
3. A4988 Stepper motor driver 1
4. Micro servo motor 1
5. TSC230 color sensor 1
6. LM7805 regulator 1
7. General blank PCB (KS 100) 1
8. 5 mm LED 1
9. Berg terminals 14

10. DC power socket 1

11. 100 uF electrolytic capacitor 2

12. 10 uF electrolytic capacitor 1

13. 8mm straight rod 8inch

15. 5mm to 8mm shaft connector 1

16. 5mm round disc connector 1

49

4.5 Hardware interfacing

4.5.1 TSC230 interfacing with microcontroller

Figure 26: TSC230 color sensor

The TCS3200 color sensor – shown in the figure below – uses a TAOS TCS3200 RGB sensor chip to
detect color. It also contains four white LEDs that light up the object in front of it.

Here’s the sensor specifications:

 Power: 2.7V to 5.5V

 Size: 28.4 x 28.4mm (1.12 x 1.12″)

 Interface: digital TTL

 High-resolution conversion of light intensity to frequency

 Programmable color and full-scale output frequency

 Communicates directly to microcontroller

4.5.2 A4988 Interfacing with ESP32

To connect the ESP32 board with the stepper motor and driver we will use all the pins of the driver
except for the enable pin and the micro step resolution selection pins. Connect the output pins of the
driver with the respective motor pins. Connect the STEP pin and the DIR pin with any appropriate
GPIO pin of ESP32 board. We have used GPIO12 to connect with DIR and GPIO14 to connect with
STEP. As we want to operate our stepper mode in full mode hence, we will leave the MS1, MS2 and
MS3 pins as they are. The RST pin will be connected with SLP so that the driver is enabled. Moreover,
the VCC and GND pins will be connected with Vin and GND pin from ESP32

50

Figure 27: A4988 interfacing with ESP32

respectively. The VMOT will be connected with an external power supply ranging between 8-35V.
We are using 12V external power supply. Make sure the GND pins are connected with the respective
common grounds.

4.5.3 Servo motor Interfacing with ESP32

Dc servo motors are popular among the diy circuit

makers. They are also used in toys and are known

as RC servo motors. RC servo motors are small,

cheap and easy to use with systems involving

microcontrollers or chips (Used in Toys) dedicated

for a singular purpose. RC servos can rotate only

180 degree. Their purpose is to provide precise

location in 0-to-180-degree angular field. Most

popular RC servo motor is tower pro micro servo

sg90. Sg90 servo motor works on 4.8 volts. Small

torque produced by sg90 at 4.8 volts can displace a

load of 1.8 kg per cm. sg90 servo motor shaft

rotation depends on pwm signal frequency and duty

cycle. Pwm frequency requirement for most RC

servo motors is 50 Hz. They can rotate between 0

to 180 degree on pwm signal duty cycle between 1 milli seconds to 2 milli seconds. 1 milli second

duty cycle at 50 hz frequency moves the servo shaft to 0-degree angle. 1.5 ms moves to 90 degree and

2 ms to 180 degree. One can calculate the duty cycles for other angles by yourself. For example, for

45-degree shaft rotation the duty cycle will be 45/180= 0.25 so 1(0 degree) +0.25= 1.25 ms.

Interfacing Diagram

51

Figure 28: Interfacing Servo Motor with ESP32

52

CHAPTER 5
(Logic & Operation)

53

 5.1 INTRODUCTION

After assembling the system, what remains is to observe its operation and efficiency of the
system. The total system is divided in several sub systems, like

 ESP32 section
 Stepper Motor section
 TSC230 color sensor section
 Servo motor section

The operation of the whole circuit is depending on every section’s performance.

5.2 Flow Chart

Figure 29: Flow chart of the program

54

5.3 Principle & Operations

At first, the colour discs are put into the colour disk holder and then align the colour positioner
under the colour disk holder. The stepper motor rotates 600 in every step to place with colour
disk above the TSC230 colour sensor. After that colour sensor check the colour and convert the
colour in their RGB values it sends those values to the microcontroller. ESP32 detects the colour
of the discs based on the predefine values of the colour discs. According to the pre-set value
controller gave information to Servo motor to rotate and place the slider on the particular colour
pot accordingly. The process continues till all the colour discs placed on the respectively colour
pot.

5.4 Cost estimation of the project

In this project we have used the cheapest IOT module ESP32. So the total cost of the project is
reduced compare to the other embedded system project. The total estimated cost of the complete
project is listed in table 3.

Table 7: Costing of the projects

Sl.
No.

Component Cost

1. ESP32 400
2. NEMA 17 Stepper Motor 750
3. A4988 Stepper motor driver 200
4. Micro servo motor 100
5. TSC230 color sensor 300
6. LM7805 regulator 5
7. General blank PCB (KS 100) 40
8. 5 mm LED 1
9. Berg terminals 14

10. DC power socket 5

11. 100 uF electrolytic capacitor 2

12. 10 uF electrolytic capacitor 2

13. 8mm straight rod 90

15. 5mm to 8mm shaft connector 80

16. 5mm round disc connector 120

Total Cost 2109/-

55

5.5 Photographs of the prototype

Figure 30: Main Controller Board

56

Figure 31: The Prototype

Figure 32: Different sections of the developed prototype

57

Chapter 6
(Conclusion & Future Scope)

58

6.1 Conclusion

Here we developed a prototype which automatically sort out color discs in the respective color
pots with the help of a micro-controller. It will help in reducing human effort and error. Our
circuit consists of ESP32, TSC230, Stepper motor with driver and servo motor. First after
switching on, the stepper motor places the color disc above the TSC230 color sensor. After
sensing the color of the disc, the servo motor place, the color discs to the respective color pots
with the help of a sliding platform. All the motors are controlled by the microcontroller.

6.2 Result

The prototype model was made according to the circuit diagram and the results were as expected.
The discs are sorted out satisfactorily using the help of color sensor and sets of motors.

6.3 Future work

Here we used a NEMA 17 stepper motor to position the colour disc on the top of the colour
sensor TSC230. It works satisfactorily with the help of the stepper motor driver
A4988/DRV8255. Only problem is that the stepper motor we used here is an open loop stepper
motor. The motor works on the pulses generated by the microcontroller. There is no feedback
system to check that all the pulses generated by the controller are used by the motor or not. If
the motor skips some of the pulses, then the rotation is not as expected. This is the main
disadvantages of the open loop stepper motor. We planned in the future to use a close loop
stepper motor to get the feedback information that all the pulsed generated by the controller
must be used by the stepper motor. Then the accuracy of the system increases drastically.

Figure 33: Close loop stepper motor

59

Chapter 7
(References)

60

Reference

[1] Ch.Shravani, G. Indira, V. Appalaraju, “Arduino Based Color Sorting Machine using TCS3200
Color Sensor”, International Journal of Innovative Technology and Exploring Engineering (IJITEE),
ISSN: 2278-3075, Volume-8, Issue- 6S4, April 2019.

[2] K.Sasidhar, Shahwar Farooqi, Mohammed Abdul Moin, M Sachin, “Design and Development of a
Colour Sorting Machine using PLC and SCADA”, International Journal of Research and Scientific
Innovation (IJRSI), Volume V, Issue VII, July 2018, ISSN 2321–2705.

[3] Kunhimohammed C. K, Muhammed Saifudeen K. K, Sahna S, Gokul M. S and Shaeez Usman
Abdulla, “Automatic Color Sorting Machine Using TCS230 Color Sensor And PIC
Microcontroller”, International Journal of Research and Innovations in Science and Technology,
Volume 2, Issue 2, 2015, ISSN(Online): 2394-3858 ISSN(Print): 2394-3866.

[4] Aung Thike, Zin Zin Moe San, Dr. Zaw Min Oo, “Design and Development of an Automatic Color
Sorting Machine on Belt Conveyor”, International Journal of Science and Engineering Applications
Volume 8–Issue 07,176-179, 2019, ISSN:-2319–7560.

[5] Aye Myat Myat Myo, Zar Chi Soe, “Automatic Color Sorting Machine Using Arduino Mega
Microcontroller”, International Journal of Latest Technology in Engineering, Management &
Applied Science (IJLTEMAS), Volume VIII, Issue VIII, August 2019, ISSN 2278-2540.

[6] Lim Jie Shen, Irda Hassan, “Design and development of colour sorting robot”, Journal of
Engineering Science and Technology EURECA 2014 Special Issue January (2015) 71– 81, ©
School of Engineering, Taylor’s University.

[7] Dharmannagari Vinay Kumar Reddy, “Sorting of objects based on colour by pick and place robotic
arm and with conveyor belt arrangement”, International Journal of mechanical engineering and
robotic research (IJMERR), Vol. 3, No. 1, January 2014, ISSN 2278 – 0149.

[8] Mr.V.A.Aher, Mayur Dukre, Ganesh Abhang, Trupti Thorat, “Colour based object sorting
machine”, International Research Journal of Engineering and Technology (IRJET), Volume 08,
Issue 02, Feb 2021, ISSN(print): 2395-0072, ISSN(online): 2395-0056.

61

Appendix A
(Hardware description)

62

Transformer less AC to DC power supply circuit using dropping
capacitor

Production of low voltage DC power supply from AC power is the most important problem faced by
many electronics developers and hobbyists. The straight forward technique is the use of a step down
transformer to reduce the 230 V or 110V AC to a preferred level of low voltage AC. But SMPS power
supply comes with the most appropriate method to create a low cost power supply by avoiding the
use of bulky transformer. This circuit is so simple and it uses a voltage dropping capacitor in series
with the phase line. Transformer less power supply is also called as capacitor power supply. It can
generate 5V, 6V, 12V 150mA from 230V or 110V AC by using appropriate zener diodes.

Figure 34: Transformer less SMPS 5 volt power supply

Working of Transformer less capacitor power supply

 This transformer less power supply circuit is also named as capacitor power supply since it uses
a special type of AC capacitor in series with the main power line.

 A common capacitor will not do the work because the mains spikes will generate holes in the
dielectric and the capacitor will be cracked by passing of current from the mains through the
capacitor.

 X rated capacitor suitable for the use in AC mains is vital for reducing AC voltage.

 A X rated dropping capacitor is intended for 250V, 400V, 600V AC. Higher voltage versions
are also obtainable. The dropping capacitor is non polarized so that it can be connected any way
in the circuit.

 The 470kΩ resistor is a bleeder resistor that removes the stored current from the capacitor when
the circuit is unplugged. It avoids the possibility of electric shock.

 Reduced AC voltage is rectified by bridge rectifier circuit. We have already discussed about
bridge rectifiers. Then the ripples are removed by the 1000µF capacitor.

63

 This circuit provides 24 volts at 160 mA current at the output. This 24 volt DC can be regulated
to necessary output voltage using an appropriate 1 watt or above zener diode.

 Here we are using 6.2V zener. You can use any type of zener diode in order to get the required
output voltage.

Resistor

Figure 35: Resistor

Resistance is the opposition of a material to the current. It is measured in Ohms Ω. All conductors
represent a certain amount of resistance, since no conductor is 100% efficient. To control the electron
flow (current) in a predictable manner, we use resistors. Electronic circuits use calibrated lumped
resistance to control the flow of current. Broadly speaking, resistor can be divided into two groups
viz. fixed & adjustable (variable) resistors. In fixed resistors, the value is fixed & cannot be varied.
In variable resistors, the resistance value can be varied by an adjuster knob. It can be divided into (a)
Carbon composition (b) Wire wound (c) Special type. The most common type of resistors used in our
projects is carbon type. The resistance value is normally indicated by color bands. Each resistance
has four colors, one of the band on either side will be gold or silver, this is called fourth band and
indicates the tolerance, others three band will give the value of resistance (see table). For example if
a resistor has the following marking on it say red, violet, gold. Comparing these colored rings with
the color code, its value is 27000 ohms or 27 kilo ohms and its tolerance is ±5%. Resistor comes in
various sizes (Power rating).The bigger the size, the more power rating of 1/4 watts. The four color
rings on its body tells us the value of resistor value.

Color Code of the resistor

Figure 36: Color Code for resistance

64

ESP32

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-
Fi and dual-mode Bluetooth. The ESP32 series employs either a Tensilica Xtensa LX6
microprocessor in both dual-core and single-core variations, Xtensa LX7 dual-core microprocessor
or a single-core RISC-V microprocessor and includes built-in antenna switches, RF balun, power
amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 is created and
developed by Espressif Systems, a Shanghai-based Chinese company, and is manufactured
by TSMC using their 40 nm process. It is a successor to the ESP8266 microcontroller.

Figure 37: ESP32 microcontroller

Blank PCB

A printed circuit board (PCB) mechanically supports and electrically connects electronic

components using conductive tracks, pads and other features etched from copper

sheets laminated onto a non-conductive substrate. PCBs can be single sided (one copper

layer), double sided (two copper layers) or multi-layer (outer and inner layers). Multi-layer PCBs

allow for much higher component density. Conductors on different layers are connected with plated-

through holes called vias. Advanced PCBs may contain components - capacitors, resistors or active

devices - embedded in the substrate.

Figure 38: Blank glass epoxy PCB Board

FR-4 glass epoxy is the primary insulating substrate upon which the vast majority of rigid PCBs are

produced. A thin layer of copper foil is laminated to one or both sides of an FR-4 panel. Circuitry

65

interconnections are etched into copper layers to produce printed circuit boards. Complex circuits are

produced in multiple layers.

Printed circuit boards are used in all but the simplest electronic products. Alternatives to PCBs

include wire wrap and point-to-point construction. PCBs require the additional design effort to lay

out the circuit, but manufacturing and assembly can be automated. Manufacturing circuits with PCBs

is cheaper and faster than with other wiring methods as components are mounted and wired with one

single part. Furthermore, operator wiring errors are eliminated.

Stepper Motor

A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that
divides a full rotation into a number of equal steps. The motor's position can be commanded to move
and hold at one of these steps without any position sensor for feedback (an open-loop controller), as
long as the motor is correctly sized to the application in respect to torque and speed.

Figure 39: NEMA 17 Stepper Motor

Stepper motors effectively have multiple "toothed" electromagnets arranged as a stator around a
central rotor, a gear-shaped piece of iron. The electromagnets are energized by an external driver
circuit or a micro controller. To make the motor shaft turn, first, one electromagnet is given power,
which magnetically attracts the gear's teeth. When the gear's teeth are aligned to the first
electromagnet, they are slightly offset from the next electromagnet. This means that when the next
electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next
one. From there the process is repeated. Each of those rotations is called a "step", with an integer
number of steps making a full rotation. In that way, the motor can be turned by a precise angle.

A4988 Stepper Motor Driver

The A4988 is a complete micro-stepping motor driver with built-in translator for easy operation. It is
designed to operate bipolar stepper motors in full-, half-, quarter-, eighth-, and sixteenth-step modes,
with an output drive capacity of up to 35 V and ±2 A. The A4988 includes a fixed off-time current
regulator which has the ability to operate in slow or mixed decay modes.

66

Figure 40: A4988 Stepper motor Driver

TSC230 / TSC3200 Colour Sensor

The TCS230 senses colour light with the help of an 8 x 8 array of photodiodes. Then using a Current-
to-Frequency Converter the readings from the photodiodes are converted into a square wave with a
frequency directly proportional to the light intensity.

Figure 41: TSC230 color sensor module

67

Appendix B
(Software coding)

68

PROGRAM CODE:

#include<Servo.h>
Servo servo_1;
int pos;

#define S0 15
#define S1 13
#define S2 12
#define S3 14
#define sensorOut 16
// Define pin connections & motor's steps per revolution
const int dirPin = D1;
const int stepPin = D2;

int Red = 0;
int Green = 0;
int Blue = 0;

void setup()
{
 servo_1.attach(D3, 500, 2400);
pinMode(S0, OUTPUT);
pinMode(S1, OUTPUT);
pinMode(S2, OUTPUT);
pinMode(S3, OUTPUT);
pinMode(sensorOut, INPUT);
pinMode(stepPin, OUTPUT);
pinMode(dirPin, OUTPUT);

// Setting frequency-scaling to 20%
digitalWrite(S0,HIGH);
digitalWrite(S1,HIGH);

Serial.begin(9600);
}

void loop()
{
// Set motor direction clockwise
 digitalWrite(dirPin, HIGH);

 // Spin motor slowly
 for(int x = 0; x < 267; x++)

69

 {
 digitalWrite(stepPin, HIGH);
 delayMicroseconds(2000);
 digitalWrite(stepPin, LOW);
 delayMicroseconds(2000);
 }
 delay(500); // Wait a second

// Setting red filtered photodiodes to be read
digitalWrite(S2,LOW);
digitalWrite(S3,LOW);
// Reading the output frequency
Red = pulseIn(sensorOut, LOW);
// Printing the value on the serial monitor
Serial.print("R= ");//printing name
Serial.print(Red);//printing RED color frequency
Serial.print(" ");
delay(50);
// Setting Green filtered photodiodes to be read
digitalWrite(S2,HIGH);
digitalWrite(S3,HIGH);
// Reading the output frequency
Green = pulseIn(sensorOut, LOW);
// Printing the value on the serial monitor
Serial.print("G= ");//printing name
Serial.print(Green);//printing RED color frequency
Serial.print(" ");
delay(50);
// Setting Blue filtered photodiodes to be read
digitalWrite(S2,LOW);
digitalWrite(S3,HIGH);
// Reading the output frequency
Blue = pulseIn(sensorOut, LOW);
// Printing the value on the serial monitor
Serial.print("B= ");//printing name
Serial.print(Blue);//printing RED color frequency
Serial.println(" ");

if(Red <= 6 && Red >=3 && Green <= 13 && Green >= 11 && Blue <= 11 && Blue >=
10){
 Serial.println(" - ORANGE Detected!");
 servo_1.write (0);
 }
if(Red <= 9 && Red >=7 && Green <= 13 && Green >= 11 && Blue <= 11 && Blue >= 9){
 Serial.println(" - BROWN Detected!");
 servo_1.write (30);
 }

70

if(Red <= 6 && Red >=3 && Green <= 6 && Green >= 4 && Blue <= 8 && Blue >= 4){
 Serial.println(" - YELLOW Detected!");
 servo_1.write (60);
 }
if(Red <= 16 && Red >=14 && Green <= 18 && Green >= 15 && Blue <= 14 && Blue >=
12){
 Serial.println(" - BLUE Detected!");
 servo_1.write (90);
 }
if(Red <= 16 && Red >=14 && Green <= 14 && Green >= 10 && Blue <= 14 && Blue >=
12){
 Serial.println(" - Green Detected!");
 servo_1.write (120);
 }
if(Red <= 8 && Red >=6 && Green <= 17 && Green >= 15 && Blue <= 14 && Blue >=
12){
 Serial.println(" - RED Detected!");
 servo_1.write (150);
 }
delay(500);
}

71

Appendix C
(Data sheets)

72

ESP32-WROOM-32 (ESP-WROOM-32)

Datasheet

Version 2.4

Espressif Systems

1. OVERVIEW

1. Overview

ESP32-WROOM-32 (ESP-WROOM-32) is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide

variety of applications, ranging from low-power sensor networks to the most demanding tasks, such as voice

encoding, music streaming and MP3 decoding.

At the core of this module is the ESP32-D0WDQ6 chip*. The chip embedded is designed to be scalable and

adaptive. There are two CPU cores that can be individually controlled, and the clock frequency is adjustable

from 80 MHz to 240 MHz. The user may also power off the CPU and make use of the low-power co-processor to

constantly monitor the peripherals for changes or crossing of thresholds. ESP32 integrates a rich set of peripherals,

ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet, high-speed SPI, UART, I2S and

I2C.

Note:

* For details on the part number of the ESP32 series, please refer to the document ESP32 Datasheet.

The integration of Bluetooth, Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted,

and that the module is future proof: using Wi-Fi allows a large physical range and direct connection to the internet

through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast

low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 µA, making it suitable

for battery powered and wearable electronics applications. ESP32 supports a data rate of up to 150 Mbps,

and 20.5 dBm output power at the antenna to ensure the widest physical range. As such the chip does offer

industry-leading specifications and the best performance for electronic integration, range, power consumption,

and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with hardware acceleration is built in as

well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that developers can continually upgrade

their products even after their release.

Table 1 provides the specifications of ESP32-WROOM-32 (ESP-WROOM-32).

Table 1: ESP32-WROOM-32 (ESP-WROOM-32) Specifications

Categories Items Specifications

Certification

RF certification FCC/CE/IC/TELEC/KCC/SRRC/NCC

Wi-Fi certification Wi-Fi Alliance

Bluetooth certification BQB

Green certification RoHS/REACH

Wi-Fi Protocols

802.11 b/g/n (802.11n up to 150 Mbps)

A-MPDU and A-MSDU aggregation and 0.4 µs guard

interval support

Frequency range 2.4 GHz ~ 2.5 GHz

Bluetooth

Protocols Bluetooth v4.2 BR/EDR and BLE specification

Radio

NZIF receiver with -97 dBm sensitivity

Class-1, class-2 and class-3 transmitter

AFH

Audio CVSD and SBC

Espressif Systems 1 ESP-WROOM-32 Datasheet V2.4

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

1. OVERVIEW

Categories Items Specifications

Hardware

Module interface

SD card, UART, SPI, SDIO, I2C, LED PWM, Motor

PWM, I2S, IR

GPIO, capacitive touch sensor, ADC, DAC

On-chip sensor Hall sensor, temperature sensor

On-board clock 40 MHz crystal

Operating voltage/Power supply 2.7 ~ 3.6V

Operating current Average: 80 mA

Minimum current delivered by

power supply
500 mA

Operating temperature range -40°C ~ +85°C

Ambient temperature range Normal temperature

Package size 18±0.2 mm x 25.5±0.2 mm x 3.1±0.15 mm

Software

Wi-Fi mode Station/SoftAP/SoftAP+Station/P2P

Wi-Fi Security WPA/WPA2/WPA2-Enterprise/WPS

Encryption AES/RSA/ECC/SHA

Firmware upgrade
UART Download / OTA (download and write firmware

via network or host)

Software development
Supports Cloud Server Development / SDK for cus-

tom firmware development

Network protocols IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT

User configuration AT instruction set, cloud server, Android/iOS app

Espressif Systems 2 ESP-WROOM-32 Datasheet V2.4

2. PIN DEFINITIONS

2. Pin Definitions

2.1 Pin Layout

Keepout Zone

3V3

EN

IO14

IO12

IO33

IO25

IO26

IO27

GND

IO32

IO35

IO34

SENSOR_VN

SENSOR_VP

37

36

26

25

30

29

28

27

38

31

32

33

34

35

IO23

IO22

IO4

IO0

IO18

IO5

IO17

IO16

GND

IO19

NC

IO21

RXD0

TXD0
IO
13

SD
2

IO
15

IO
2

GN
D

SD
1

SD
0

CL
K

CM
D

SD
3

16 17 23222118

1:GND

2

3

13

14

9

10

11

12

1

8

7

6

5

4

15 242019

Figure 1: ESP32-WROOM-32 (ESP-WROOM-32) Pin layout

2.2 Pin Description

ESP32-WROOM-32 (ESP-WROOM-32) has 38 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name No. Type Function

GND 1 P Ground

3V3 2 P Power supply.

EN 3 I Chip-enable signal. Active high.

SENSOR_VP 4 I GPIO36, SENSOR_VP, ADC_H, ADC1_CH0, RTC_GPIO0

SENSOR_VN 5 I GPIO39, SENSOR_VN, ADC1_CH3, ADC_H, RTC_GPIO3

IO34 6 I GPIO34, ADC1_CH6, RTC_GPIO4

IO35 7 I GPIO35, ADC1_CH7, RTC_GPIO5

IO32 8 I/O
GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4,

TOUCH9, RTC_GPIO9

IO33 9 I/O
GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5,

TOUCH8, RTC_GPIO8

IO25 10 I/O GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0

IO26 11 I/O GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1

IO27 12 I/O GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV

Espressif Systems 3 ESP-WROOM-32 Datasheet V2.4

2. PIN DEFINITIONS

Name No. Type Function

IO14 13 I/O
GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,

HS2_CLK, SD_CLK, EMAC_TXD2

IO12 14 I/O
GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,

HS2_DATA2, SD_DATA2, EMAC_TXD3

GND 15 P Ground

IO13 16 I/O
GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,

HS2_DATA3, SD_DATA3, EMAC_RX_ER

SHD/SD2* 17 I/O GPIO9, SD_DATA2, SPIHD, HS1_DATA2, U1RXD

SWP/SD3* 18 I/O GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD

SCS/CMD* 19 I/O GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS

SCK/CLK* 20 I/O GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS

SDO/SD0* 21 I/O GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS

SDI/SD1* 22 I/O GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS

IO15 23 I/O
GPIO15, ADC2_CH3, TOUCH3, MTDO, HSPICS0, RTC_GPIO13,

HS2_CMD, SD_CMD, EMAC_RXD3

IO2 24 I/O
GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,

SD_DATA0

IO0 25 I/O
GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1,

EMAC_TX_CLK

IO4 26 I/O
GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1,

SD_DATA1, EMAC_TX_ER

IO16 27 I/O GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT

IO17 28 I/O GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180

IO5 29 I/O GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK

IO18 30 I/O GPIO18, VSPICLK, HS1_DATA7

IO19 31 I/O GPIO19, VSPIQ, U0CTS, EMAC_TXD0

NC 32 - -

IO21 33 I/O GPIO21, VSPIHD, EMAC_TX_EN

RXD0 34 I/O GPIO3, U0RXD, CLK_OUT2

TXD0 35 I/O GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2

IO22 36 I/O GPIO22, VSPIWP, U0RTS, EMAC_TXD1

IO23 37 I/O GPIO23, VSPID, HS1_STROBE

GND 38 P Ground

Note:

* Pins SCK/CLK, SDO/SD0, SDI/SD1, SHD/SD2, SWP/SD3 and SCS/CMD, namely, GPIO6 to GPIO11 are connected to

the integrated SPI flash integrated on ESP32-WROOM-32 (ESP-WROOM-32) and are not recommended for other uses.

Espressif Systems 4 ESP-WROOM-32 Datasheet V2.4

2. PIN DEFINITIONS

2.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 6 Schematics:

• MTDI

• GPIO0

• GPIO2

• MTDO

• GPIO5

Software can read the value of these five bits from the register ”GPIO_STRAPPING”.

During the chip’s system reset (power-on reset, RTC watchdog reset and brownout reset), the latches of the

strapping pins sample the voltage level as strapping bits of ”0” or ”1”, and hold these bits until the chip is powered

down or shut down. The strapping bits configure the device boot mode, the operating voltage of VDD_SDIO and

other system initial settings.

Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strap-

ping pin is unconnected or the connected external circuit is high-impendence, the internal weak pull-up/pull-down

will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host

MCU’s GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 3 for detailed boot modes’ configuration by strapping pins.

Table 3: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)

Pin Default 3.3V 1.8V

MTDI Pull-down 0 1

Booting Mode

Pin Default SPI Boot Download Boot

GPIO0 Pull-up 1 0

GPIO2 Pull-down Don’t-care 0

Debugging Log Printed on U0TXD During Booting?

Pin Default U0TXD Toggling U0TXD Silent

MTDO Pull-up 1 0

Timing of SDIO Slave

Pin Default
Falling-edge Input

Falling-edge Output

Falling-edge Input

Rising-edge Output

Rising-edge Input

Falling-edge Output

Rising-edge Input

Rising-edge Output

MTDO Pull-up 0 0 1 1

GPIO5 Pull-up 0 1 0 1

Note:

Firmware can configure register bits to change the settings of ”Voltage of Internal LDO (VDD_SDIO)” and ”Timing of SDIO

Slave” after booting.

Espressif Systems 5 ESP-WROOM-32 Datasheet V2.4

3. FUNCTIONAL DESCRIPTION

3. Functional Description

This chapter describes the modules and functions integrated in ESP32-WROOM-32 (ESP-WROOM-32).

3.1 CPU and Internal Memory

ESP32-D0WDQ6 contains two low-power Xtensa® 32-bit LX6microprocessors. The internal memory includes:

• 448 kB of ROM for booting and core functions.

• 520 kB (8 kB RTC FAST Memory included) of on-chip SRAM for data and instruction.

– 8 kB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is

accessed by the main CPU during RTC Boot from the Deep-sleep mode.

• 8 kB of SRAM in RTC, which is called RTC SLOWMemory and can be accessed by the co-processor during

the Deep-sleep mode.

• 1 kbit of eFuse, of which 320 bits are used for the system (MAC address and chip configuration) and the

remaining 704 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32 supports up to four 16-MB of external QSPI flash and SRAM with hardware encryption based on AES to

protect developers’ programs and data.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

• Up to 16 MB of external flash are memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit

access. Code execution is supported.

• Up to 8 MB of external flash/SRAM are memory-mapped onto the CPU data space, supporting 8, 16 and

32-bit access. Data-read is supported on the flash and SRAM. Data-write is supported on the SRAM.

ESP32-WROOM-32 (ESP-WROOM-32) integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-

mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported. The

integrated SPI flash is connected to GPIO6, GPIO7, GPIO8, GPIO9, GPIO10 and GPIO11. These six pins cannot

be used as regular GPIO.

3.3 Crystal Oscillators

The ESP32 Wi-Fi/BT firmware can only support 40 MHz crystal oscillator for now.

Espressif Systems 6 ESP-WROOM-32 Datasheet V2.4

3. FUNCTIONAL DESCRIPTION

3.4 RTC and Low-Power Management

With the use of advanced powermanagement technologies, ESP32 can switch between different powermodes.

• Power modes

– Active mode: The chip radio is powered on. The chip can receive, transmit, or listen.

– Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth base-

band and radio are disabled.

– Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP

co-processor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake

up the chip.

– Deep-sleep mode: Only the RTC memory and RTC peripherals are powered on. Wi-Fi and Bluetooth

connection data are stored in the RTC memory. The ULP co-processor can work.

– Hibernation mode: The internal 8-MHz oscillator and ULP co-processor are disabled. The RTC recovery

memory is powered down. Only one RTC timer on the slow clock and some RTC GPIOs are active.

The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

The power consumption varies with different powermodes/sleep patterns andwork statuses of functional modules.

Please see Table 4 for details.

Table 4: Power Consumption by Power Modes

Power mode Description Power consumption

Active (RF working)

Wi-Fi TX packet 14 dBm ~ 19.5 dBm

Please refer to ESP32 Datasheet.Wi-Fi / BT TX packet 0 dBm

Wi-Fi / BT RX and listening

Association sleep pattern (by Light-sleep) 1 mA ~ 4 mA @DTIM3

Modem-sleep The CPU is powered on.

Max speed 240 MHz: 30 mA ~ 50 mA

Normal speed 80 MHz: 20 mA ~ 25 mA

Slow speed 2 MHz: 2 mA ~ 4 mA

Light-sleep - 0.8 mA

Deep-sleep

The ULP co-processor is powered on. 150 µA

ULP sensor-monitored pattern 100 µA @1% duty

RTC timer + RTC memory 10 µA

Hibernation RTC timer only 5 µA

Power off CHIP_PU is set to low level, the chip is powered off 0.1 µA

Note:

• When Wi-Fi is enabled, the chip switches between Active and Modem-sleep mode. Therefore, power consumption
changes accordingly.

• In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and
the peripherals used.

• During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to
work.

• When the system works in the ULP sensor-monitored pattern, the ULP co-processor works with the ULP sensor
periodically; ADC works with a duty cycle of 1%, so the power consumption is 100 µA.

Espressif Systems 7 ESP-WROOM-32 Datasheet V2.4

http://espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

TCS230

PROGRAMMABLE

COLOR LIGHT-TO-FREQUENCY CONVERTER
TAOS046M − OCTOBER 2007

1

The LUMENOLOGY � Company
�

�

Copyright � 2007, TAOS Inc.

www.taosinc.com

� High-Resolution Conversion of Light
Intensity to Frequency

� Programmable Color and Full-Scale Output
Frequency

� Communicates Directly With a Microcontroller

� Single-Supply Operation (2.7 V to 5.5 V)

� Power Down Feature

� Nonlinearity Error Typically 0.2% at 50 kHz

� Stable 200 ppm/°C Temperature Coefficient

� Low-Profile Lead (Pb) Free and RoHS
Compliant Surface-Mount Package

Description

The TCS230 programmable color light-to-frequency converter combines configurable silicon photodiodes and
a current-to-frequency converter on a single monolithic CMOS integrated circuit. The output is a square wave
(50% duty cycle) with frequency directly proportional to light intensity (irradiance). The full-scale output
frequency can be scaled by one of three preset values via two control input pins. Digital inputs and digital output
allow direct interface to a microcontroller or other logic circuitry. Output enable (OE) places the output in the
high-impedance state for multiple-unit sharing of a microcontroller input line.

The light-to-frequency converter reads an 8 x 8 array of photodiodes. Sixteen photodiodes have blue filters, 16
photodiodes have green filters, 16 photodiodes have red filters, and 16 photodiodes are clear with no filters.
The four types (colors) of photodiodes are interdigitated to minimize the effect of non-uniformity of incident
irradiance. All 16 photodiodes of the same color are connected in parallel and which type of photodiode the
device uses during operation is pin-selectable. Photodiodes are 120 μm x 120 μm in size and are on 144-μm
centers.

Functional Block Diagram

Light
Current-to-Frequency

Converter
Photodiode

Array

S2 S3 S0 S1 OE

Output

�

�

Texas Advanced Optoelectronic Solutions Inc.
1001 Klein Road � Suite 300 � Plano, TX 75074 � (972) 673-0759

8 S3

7 S2

6 OUT

5 VDD

PACKAGE D
8-LEAD SOIC
(TOP VIEW)

S0 1

S1 2

OE 3

GND 4

TCS230

PROGRAMMABLE

COLOR LIGHT-TO-FREQUENCY CONVERTER
TAOS046M − OCTOBER 2007

2

�

�

Copyright � 2007, TAOS Inc. The LUMENOLOGY � Company

www.taosinc.com

Terminal Functions

TERMINAL
I/O DESCRIPTION

NAME NO.
I/O DESCRIPTION

GND 4 Power supply ground. All voltages are referenced to GND.

OE 3 I Enable for fo (active low).

OUT 6 O Output frequency (fo).

S0, S1 1, 2 I Output frequency scaling selection inputs.

S2, S3 7, 8 I Photodiode type selection inputs.

VDD 5 Supply voltage

Table 1. Selectable Options

S0 S1 OUTPUT FREQUENCY SCALING (fo) S2 S3 PHOTODIODE TYPE

L L Power down L L Red

L H 2% L H Blue

H L 20% H L Clear (no filter)

H H 100% H H Green

Available Options

DEVICE TA PACKAGE − LEADS PACKAGE DESIGNATOR ORDERING NUMBER

TCS230 −40°C to 85°C SOIC−8 D TCS230D

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, VDD (see Note 1) 6 V.
Input voltage range, all inputs, VI −0.3 V to VDD + 0.3 V.
Operating free-air temperature range, TA −40°C to 85°C.
Storage temperature range −40°C to 85°C.
Solder conditions in accordance with JEDEC J−STD−020A, maximum temperature (see Note 2) 260°C. . .

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.
2. The device may be hand soldered provided that heat is applied only to the solder pad and no contact is made between the tip of

the solder iron and the device lead. The maximum time heat should be applied to the device is 5 seconds.

Recommended Operating Conditions

MIN NOM MAX UNIT

Supply voltage, VDD 2.7 5 5.5 V

High-level input voltage, VIH VDD = 2.7 V to 5.5 V 2 VDD V

Low-level input voltage, VIL VDD = 2.7 V to 5.5 V 0 0.8 V

Operating free-air temperature range, TA −40 70 °C

TCS230

PROGRAMMABLE

COLOR LIGHT-TO-FREQUENCY CONVERTER
TAOS046M − OCTOBER 2007

3

The LUMENOLOGY � Company
�

�

Copyright � 2007, TAOS Inc.

www.taosinc.com

Electrical Characteristics at TA = 25°C, VDD = 5 V (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VOH High-level output voltage IOH = −4 mA 4 4.5 V

VOL Low-level output voltage IOL = 4 mA 0.25 0.40 V

IIH High-level input current 5 μA

IIL Low-level input current 5 μA

I Supply current
Power-on mode 2 3 mA

IDD Supply current
Power-down mode 7 15 μA

S0 = H, S1 = H 500 600 kHz

Full-scale frequency (See Note 2) S0 = H, S1 = L 100 120 kHzFull scale frequency (See Note 2)

S0 = L, S1 = H 10 12 kHz

Temperature coefficient of output frequency λ ≤ 700 nm, −25°C ≤ TA ≤ 70°C ±200 ppm/°C

kSVS Supply voltage sensitivity VDD = 5 V ±10% ±0.5 %/V

NOTE 3: Full-scale frequency is the maximum operating frequency of the device without saturation.

TCS230

PROGRAMMABLE

COLOR LIGHT-TO-FREQUENCY CONVERTER
TAOS046M − OCTOBER 2007

4

�

�

Copyright � 2007, TAOS Inc. The LUMENOLOGY � Company

www.taosinc.com

Operating Characteristics at VDD = 5 V, TA = 25°C, S0 = H, S1 = H (unless otherwise noted)
(See Notes 3, 4, 5, 6, and 7).

PARAMETER
TEST

CONDITIONS

CLEAR
PHOTODIODE
S2 = H, S3 = L

BLUE
PHOTODIODE
S2 = L, S3 = H

GREEN
PHOTODIODE
S2 = H, S3 = H

RED
PHOTODIODE
S2 = L, S3 = L UNIT

CONDITIONS
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX

Ee = 47.2 μW/cm2,
λp = 470 nm

16 20 24 11.2 16.4 21.6 kHz

fO
Output
frequency

Ee = 40.4 μW/cm2,
λp = 524 nm

16 20 24 8 13.6 19.2 kHz
q y

Ee = 34.6 μW/cm2,
λp = 640 nm

16 20 24 14 19 24 kHz

fD
Dark
frequency

Ee = 0 2 12 2 12 2 12 2 12 Hz

λp = 470 nm 424 348 81 26

R
Irradiance
responsivity

λp = 524 nm 495 163 337 35 Hz/
(W/Re responsivity

(Note 8) λp = 565 nm 532 37 309 91
(μW/
cm2)(Note 8)

λp = 640 nm 578 31 29 550
cm2)

λp = 470 nm 1410 1720
Saturation
irradiance

λp = 524 nm 1210 1780 μW/
irradiance
(Note 9) λp = 565 nm 1130 1940

μW/
cm2

(Note 9)
λp = 640 nm 1040 1090

λp = 470 nm 565 464 108 35

R
Illuminance
responsivity

λp = 524 nm 95 31 65 7 Hz/
Rv responsivity

(Note 10) λp = 565 nm 89 6 52 15
Hz/
lx

(Note 10)
λp = 640 nm 373 20 19 355

fO = 0 to 5 kHz
±0.1

%
±0.1

%
±0.1

%
±0.1

%
% F.S.

Nonlinearity
(Note 11)

fO = 0 to 50 kHz
±0.2

%
±0.2

%
±0.2

%
±0.2

%
% F.S.

(Note 11)

fO = 0 to 500 kHz
±0.5

%
±0.5

%
±0.5

%
±0.5

%
% F.S.

Recovery
from power
down

100 100 100 100 μs

Response
time to out-
put enable
(OE)

100 100 100 100 ns

NOTES: 4. Optical measurements are made using small-angle incident radiation from a light-emitting diode (LED) optical source.
5. The 470 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics:

peak wavelength λp = 470 nm, spectral halfwidth Δλ½ = 35 nm, and luminous efficacy = 75 lm/W.
6. The 524 nm input irradiance is supplied by an InGaN light-emitting diode with the following characteristics:

peak wavelength λp = 524 nm, spectral halfwidth Δλ½ = 47 nm, and luminous efficacy = 520 lm/W.
7. The 565 nm input irradiance is supplied by a GaP light-emitting diode with the following characteristics:

peak wavelength λp = 565 nm, spectral halfwidth Δλ½ = 28 nm, and luminous efficacy = 595 lm/W.
8. The 640 nm input irradiance is supplied by a AlInGaP light-emitting diode with the following characteristics:

peak wavelength λp = 640 nm, spectral halfwidth Δλ½ = 17 nm, and luminous efficacy = 155 lm/W.
9. Irradiance responsivity Re is characterized over the range from zero to 5 kHz.

10. Saturation irradiance = (full-scale frequency)/(irradiance responsivity).
11. Illuminance responsivity Rv is calculated from the irradiance responsivity by using the LED luminous efficacy values stated in notes

4, 5, and 6 and using 1 lx = 1 lm/m2.
12. Nonlinearity is defined as the deviation of fO from a straight line between zero and full scale, expressed as a percent of full scale.

TCS230

PROGRAMMABLE

COLOR LIGHT-TO-FREQUENCY CONVERTER
TAOS046M − OCTOBER 2007

5

The LUMENOLOGY � Company
�

�

Copyright � 2007, TAOS Inc.

www.taosinc.com

TYPICAL CHARACTERISTICS

Figure 1

300 500 700 900

R
el

at
iv

e
R

es
p

o
n

si
vi

ty

1100
λ − Wavelength − nm

PHOTODIODE SPECTRAL RESPONSIVITY

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Blue

TA = 25°C

Green

Normalized to
Clear

@ 715 nm

Red

Blue

Green

Clear

Figure 2

300 500 700 900
R

el
at

iv
e

R
es

p
o

n
si

vi
ty

1100
λ − Wavelength − nm

TA = 25°C

PHOTODIODE SPECTRAL RESPONSIVITY WITH
EXTERNAL IR-BLOCKING FILTER†

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

Normalized to
Clear

@ 540 nm

† Typical IR filter examples include Schott BG18, Schott BG39, and

 Hoya CM500.

Clear

Green

Red

Blue

Figure 3

NORMALIZED OUTPUT FREQUENCY
vs.

ANGULAR DISPLACEMENT

� − Angular Displacement − °

f O
 —

 O
u

tp
u

t
F

re
q

u
en

cy
 —

 N
o

rm
al

iz
ed

0

0.2

0.4

0.6

0.8

1

−90 −60 −30 0 30 60 90

O
p

ti
ca

l A
xi

s

Angular Displacement is
Equal for Both Aspects

 HB Stepper Motor Catalog
MotionKing (China) Motor Industry Co., Ltd.

www.MotionKing.com MK1106, Rev.04 9

2 Phase Hybrid Stepper Motor
17HS series-Size 42mm(1.8 degree)

Wiring Diagram:

UNI-POLAR(6 LEADS) BI-POLAR(4LEADS)

Electrical Specifications:

Series
Model

Step
Angle
(deg)

Motor
Length
(mm)

Rated
Current

(A)

Phase
Resistance

(ohm)

Phase
Inductance

(mH)

Holding
Torque

(N.cm Min)

Detent
Torque

(N.cm Max)

Rotor
Inertia
(g.cm²)

Lead
Wire
(No.)

Motor
Weight

(g)

17HS2408 1.8 28 0.6 8 10 12 1.6 34 4 150

17HS3401 1.8 34 1.3 2.4 2.8 28 1.6 34 4 220

17HS3410 1.8 34 1.7 1.2 1.8 28 1.6 34 4 220

17HS3430 1.8 34 0.4 30 35 28 1.6 34 4 220

17HS3630 1.8 34 0.4 30 18 21 1.6 34 6 220

17HS3616 1.8 34 0.16 75 40 14 1.6 34 6 220

17HS4401 1.8 40 1.7 1.5 2.8 40 2.2 54 4 280

17HS4402 1.8 40 1.3 2.5 5.0 40 2.2 54 4 280

17HS4602 1.8 40 1.2 3.2 2.8 28 2.2 54 6 280

17HS4630 1.8 40 0.4 30 28 28 2.2 54 6 280

17HS8401 1.8 48 1.7 1.8 3.2 52 2.6 68 4 350

17HS8402 1.8 48 1.3 3.2 5.5 52 2.6 68 4 350

17HS8403 1.8 48 2.3 1.2 1.6 46 2.6 68 4 350

17HS8630 1.8 48 0.4 30 38 34 2.6 68 6 350

*Note: We can manufacture products according to customer's requirements.
Dimensions: unit=mm Motor Length:

Model Length
17HS2XXX 28 mm
17HS3XXX 34 mm

16HS4XXX 40 mm

16HS8XXX 48 mm

Features and Benefits
▪ Low RDS(ON) outputs
▪ Automatic current decay mode detection/selection
▪ Mixed and Slow current decay modes
▪ Synchronous rectification for low power dissipation
▪ Internal UVLO
▪ Crossover-current protection
▪ 3.3 and 5 V compatible logic supply
▪ Thermal shutdown circuitry
▪ Short-to-ground protection
▪ Shorted load protection
▪ Five selectable step modes: full, 1/2, 1/4, 1/8, and 1/16

Package:

Description
The A4988 is a complete microstepping motor driver with
built-in translator for easy operation. It is designed to operate
bipolar stepper motors in full-, half-, quarter-, eighth-, and
sixteenth-step modes, with an output drive capacity of up to
35 V and ±2 A. The A4988 includes a fixed off-time current
regulator which has the ability to operate in Slow or Mixed
decay modes.

The translator is the key to the easy implementation of the
A4988. Simply inputting one pulse on the STEP input drives
the motor one microstep. There are no phase sequence tables,
high frequency control lines, or complex interfaces to program.
The A4988 interface is an ideal fit for applications where a
complex microprocessor is unavailable or is overburdened.

During stepping operation, the chopping control in the A4988
automatically selects the current decay mode, Slow or Mixed.
In Mixed decay mode, the device is set initially to a fast decay
for a proportion of the fixed off-time, then to a slow decay for
the remainder of the off-time. Mixed decay current control
results in reduced audible motor noise, increased step accuracy,
and reduced power dissipation.

DMOS Microstepping Driver with Translator
And Overcurrent Protection

Continued on the next page…

A4988

Microcontroller or
Controller Logic

VDD

VREF GND GND

RESET

ENABLE

SLEEP

DIR

MS2
MS3

MS1

STEP

VBB1CP1 VCPVREG

VDD

ROSC

5 kΩ

0.22 μF

0.22 μF
0.1 μF 0.1 μF

100 μF

CP2

VBB2

OUT1A

OUT1B

SENSE1

OUT2A

OUT2B

SENSE2

A4988

Approximate size

28-contact QFN
with exposed thermal pad

5 mm × 5 mm × 0.90 mm
(ET package)

Typical Application Diagram

4988-DS, Rev. 4

DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

2Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Internal synchronous rectification control circuitry is provided
to improve power dissipation during PWM operation. Internal
circuit protection includes: thermal shutdown with hysteresis,
undervoltage lockout (UVLO), and crossover-current protection.
Special power-on sequencing is not required.

The A4988 is supplied in a surface mount QFN package (ES), 5 mm
× 5 mm, with a nominal overall package height of 0.90 mm and an
exposed pad for enhanced thermal dissipation. It is lead (Pb) free
(suffix –T), with 100% matte tin plated leadframes.

Description (continued)

Absolute Maximum Ratings
Characteristic Symbol Notes Rating Units

Load Supply Voltage VBB 35 V

Output Current IOUT ±2 A

Logic Input Voltage VIN –0.3 to 5.5 V

Logic Supply Voltage VDD –0.3 to 5.5 V

Motor Outputs Voltage –2.0 to 37 V

Sense Voltage VSENSE –0.5 to 0.5 V

Reference Voltage VREF 5.5 V

Operating Ambient Temperature TA Range S –20 to 85 ºC

Maximum Junction TJ(max) 150 ºC

Storage Temperature Tstg –55 to 150 ºC

Selection Guide
Part Number Package Packing

A4988SETTR-T 28-contact QFN with exposed thermal pad 1500 pieces per 7-in. reel

DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

3Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Functional Block Diagram

SENSE1

SENSE2

VREG

VCP

CP2

Control
Logic

DAC

VDD

PWM Latch
Blanking

Mixed Decay

DAC

STEP

DIR

RESET

MS1

PWM Latch
Blanking

Mixed Decay

Current
Regulator

CP1

Charge
Pump

RS2

RS1

VBB1

OUT1A

OUT1B

VBB2

OUT2A

OUT2B

0.1 F

VREF

Translator

Gate
Drive DMOS Full Bridge

DMOS Full Bridge

0.1 F0.22 F

OSC

ROSC

MS2

REF

ENABLE

SLEEP

MS3

OCP

OCP

DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

4Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

ELECTRICAL CHARACTERISTICS1 at TA = 25°C, VBB = 35 V (unless otherwise noted)
Characteristics Symbol Test Conditions Min. Typ.2 Max. Units

Output Drivers
Load Supply Voltage Range VBB Operating 8 – 35 V
Logic Supply Voltage Range VDD Operating 3.0 – 5.5 V

Output On Resistance RDSON
Source Driver, IOUT = –1.5 A – 320 430 mΩ
Sink Driver, IOUT = 1.5 A – 320 430 mΩ

Body Diode Forward Voltage VF
Source Diode, IF = –1.5 A – – 1.2 V
Sink Diode, IF = 1.5 A – – 1.2 V

Motor Supply Current IBB
fPWM < 50 kHz – – 4 mA
Operating, outputs disabled – – 2 mA

Logic Supply Current IDD
fPWM < 50 kHz – – 8 mA
Outputs off – – 5 mA

Control Logic

Logic Input Voltage
VIN(1) VDD0.7 – – V

VIN(0) – – VDD0.3 V

Logic Input Current
IIN(1) VIN = VDD0.7 –20 <1.0 20 μA
IIN(0) VIN = VDD0.3 –20 <1.0 20 μA

Microstep Select
RMS1 MS1 pin – 100 – kΩ
RMS2 MS2 pin – 50 – kΩ
RMS3 MS3 pin – 100 – kΩ

Logic Input Hysteresis VHYS(IN) As a % of VDD 5 11 19 %
Blank Time tBLANK 0.7 1 1.3 μs

Fixed Off-Time tOFF
OSC = VDD or GND 20 30 40 μs
ROSC = 25 kΩ 23 30 37 μs

Reference Input Voltage Range VREF 0 – 4 V
Reference Input Current IREF –3 0 3 μA

Current Trip-Level Error3 errI

VREF = 2 V, %ITripMAX = 38.27% – – ±15 %
VREF = 2 V, %ITripMAX = 70.71% – – ±5 %
VREF = 2 V, %ITripMAX = 100.00% – – ±5 %

Crossover Dead Time tDT 100 475 800 ns
Protection
Overcurrent Protection Threshold4 IOCPST 2.1 – – A
Thermal Shutdown Temperature TTSD – 165 – °C
Thermal Shutdown Hysteresis TTSDHYS – 15 – °C
VDD Undervoltage Lockout VDDUVLO VDD rising 2.7 2.8 2.9 V
VDD Undervoltage Hysteresis VDDUVLOHYS – 90 – mV

1For input and output current specifications, negative current is defined as coming out of (sourcing) the specified device pin.
2Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for individual
units, within the specified maximum and minimum limits.
3VERR = [(VREF/8) – VSENSE] / (VREF/8).
4Overcurrent protection (OCP) is tested at TA = 25°C in a restricted range and guaranteed by characterization.

DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

5Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

THERMAL CHARACTERISTICS

Characteristic Symbol Test Conditions* Value Units
Package Thermal Resistance RθJA Four-layer PCB, based on JEDEC standard 32 ºC/W

*Additional thermal information available on Allegro Web site.

Temperature, TA (°C)

Po
w

er
 D

is
si

pa
tio

n,
 P

D
 (W

)

0

0.50

1.50

2.00

2.50

3.00

3.50

4.00

1.00

20 40 60 80 100 120 140 160

Power Dissipation versus Ambient Temperature

R
JA = 32 ºC/W

DMOS Microstepping Driver with Translator
And Overcurrent ProtectionA4988

6Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Figure 1. Logic Interface Timing Diagram

STEP

 t A

t D t C

MS1, MS2, MS3,
RESET, or DIR

t B

Table 1. Microstepping Resolution Truth Table

Time Duration Symbol Typ. Unit
STEP minimum, HIGH pulse width tA 1 μs

STEP minimum, LOW pulse width tB 1 μs

Setup time, input change to STEP tC 200 ns

Hold time, input change to STEP tD 200 ns

MS1 MS2 MS3 Microstep Resolution Excitation Mode
L L L Full Step 2 Phase

H L L Half Step 1-2 Phase

L H L Quarter Step W1-2 Phase

H H L Eighth Step 2W1-2 Phase

H H H Sixteenth Step 4W1-2 Phase

	Final Report.pdf (p.1-84)
	front pages.pdf (p.1-5)
	index.pdf (p.6-9)
	index.pdf (p.1-6)

	temp.pdf (p.10-12)
	abbreviation.pdf (p.7)

	Final Body.pdf (p.13-84)
	chapter 1 & 2.pdf (p.1-9)
	CHapter 3.pdf (p.10-46)
	chaper 4.pdf (p.47-52)
	CHapter 5 6 7 appendix A B C.pdf (p.53-72)

	esp-wroom-32_datasheet_en-1223836.pdf (p.85-92)
	TSC230.pdf (p.93-97)
	Features
	Description
	Functional Block Diagram
	Terminal Functions
	Available Options
	Absolute Maximum Ratings
	Recommended Operating Conditions
	Electrical Characteristics
	Operating Characteristics
	Typical Characteristics
	Application Information
	Power supply considerations
	Input interface
	Output interface

	17HS2408-MotionKing.pdf (p.98)
	A4988_V4.PDF (p.99-104)

