

IoT Based Air Pollution Monitoring System

A Project report submitted in partial fulfilment

of the requirements for the degree of B. Tech in Electrical Engineering

By

Agniva Banerjee (11701618065)

Bonny Sikdar (11701618053)

Sourav Roy (11701618020)

Under the supervision of

Dr. Debasish Mondal

Professor & HOD

Department of Electrical Engineering

Department of Electrical Engineering

RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

Maulana Abul Kalam Azad University of Technology (MAKAUT)
© 2022

Department of Electrical Engineering
RCC INSTITUTE OF INFORMATION TECHNOLOGY

CANAL SOUTH ROAD, BELIAGHATA, KOLKATA – 700015, WEST BENGAL

CERTIFICATE

To whom it may concern

This is to certify that the project work entitled IOT Based Air Pollution Monitoring System

is the bonafide work carried out by Agniva Banerjee (11701618065), Bonny Sikdar

(11701618053) and Sourav Roy (11701618020), students of B.Tech in the Dept. of

Electrical Engineering, RCC Institute of Information Technology (RCCIIT), Canal South

Road, Beliaghata, Kolkata-700015, affiliated to Maulana Abul Kalam Azad University of

Technology (MAKAUT), West Bengal, India, during the academic year 2021-22, in partial

fulfillment of the requirements for the degree of Bachelor of Technology in Electrical

Engineering and this project has not submitted previously for the award of any other degree,

diploma and fellowship.

 _____________________________ ____________________________

 Signature of the Guide Signature of the HOD, EE

 Name: Dr. Debasish Mondal Name: Dr. Debasish Mondal

 Designation: Professor & HOD, EE Dept. Designation: Professor & HOD, EE Dept.

Signature of the External Examiner

Name:

Designation:

ACKNOWLEDGEMENT

It is our great fortune that we have got an opportunity to carry out this project work under the

supervision of Dr. Debasish Mondal in the Department of Electrical Engineering, RCC Institute

of Information Technology (RCCIIT), Canal South Road, Beliaghata, Kolkata-700015,

affiliated to Maulana Abul Kalam Azad University of Technology (MAKAUT), West Bengal,

India. We express our sincere thanks and deepest sense of gratitude to our guide for his constant

support, unparalleled guidance and limitless encouragement.

We wish to convey our gratitude to Dr. Debasish Mondal, HOD, Department of Electrical

Engineering, RCCIIT and the authority of RCCIIT for providing all kinds of the infrastructural

facility for the research work.

We would also like to convey our gratitude to all the faculty members and staffs of the

Department of Electrical Engineering, RCCIIT for their wholehearted cooperation to make this

work turn into reality.

Place: Kolkata

Date: 8th June, 2022

(Agniva Banerjee) (Bonny Sikdar) (Sourav Roy)

TABLE OF CONTENTS

TOPICS PAGE NO.

List of figures .. i

List of acronyms ... ii

ABSTRACT .. iii

CHAPTER 1: Introduction ... 01-02

1.1 Aim……………………………………………………………………….......................01

1.2 Literature Survey…………………………………………………………………..01-02

CHAPTER 2: Theory & Description of the Components .. 03-10

2.1 What is IoT?...03-04

2.2 Components Used……………………………………………………………………...05

2.3 Brief Description of the Components……………………………………………...05-10

2.4 Working Procedures ……………………………………………...................................10

CHAPTER 3: Hardware Model .. 11-14

3.1 Hardware Model to Preheat DHT11 Sensor Module………………………………...11

3.2 Hardware Model to Preheat and Calibrate MQ-135 Gas Sensor Module………12-13

3.3 Final Hardware Model…...…………………………………………………………13-14

CHAPTER 4: Algorithm and Software Program ... 15-21

4.1 Working Algorithm………………………………………………………………….…15

4.2 Calibration of MQ-135 Gas Sensor Module……………………………………….16-19

4.3 Execution of the Main Program…………………………...……………………….19-21

CHAPTER 5: Results ... 22-28

CHAPTER 6: Conclusion ...29

REFERENCES ...30

APPENDIX

A.1 Pin Description of NodeMCU .. 31-32

A.2 Description of Software Libraries used ..33

A.3 Cost Estimation .. 34

 i

List of Figures

Figure No. Figure Title
1 IoT based air pollution monitoring system
2.1 Pinout Diagram of NodeMCU V3
2.2 Pinout Diagram of DHT11 sensor
2.3 The structure of the humidity sensor
2.4 Mq-135 Gas Sensor Module
2.5 Veroboard
2.6 AC-DC Adapter
2.7 LEDs
2.8 Resistors
2.9 Arduino IDE
2.10 ThingSpeak Cloud
3.1 Circuit Diagram to Pre-heat the DHT11 sensor module
3.2 Circuit Diagram to Pre-heat the MQ-135 gas sensor module
3.3 Circuit Diagram to Calibrate the MQ-135 Gas Sensor module
3.4 Circuit Diagram of the setup
5.1 Observations for Experiment 1
5.2 Setup for Experiment 1
5.3 Observations for Experiment 2
5.4 Setup for Experiment 2
5.5 Observations for Experiment 3
5.6 Setup for Experiment 3
5.7 Setup for Experiment 4
5.8 Observations for Experiment 4
5.9 Setup for Experiment 5
5.10 Observations for Experiment 5

 ii

List of Acronyms

DHT Digital Humidity and Temperature
IoT Internet of Things

PPM Parts Per Molecule
PM Particulate Matter
CO Carbon Monoxide
CO2 Carbon Dioxide
LED Light Emitting Diode
LPG Liquid Petroleum Gas
IDE Integrated Development Environment

 iii

ABSTRACT

Air pollution is one of the biggest threats to the present-day environment. Everyone is being

affected by air pollution day by day including humans, animals, crops, cities, forests and aquatic

ecosystems. Besides that, it should be controlled at a certain level to prevent the increasing rate of

global warming. This project aims to design an IOT-based air pollution monitoring system

using the internet from anywhere using a computer or mobile to monitor the air quality of the

surroundings and environment. There are various methods and instruments available for the

measurement and monitoring quality of air. The IoT-based air pollution monitoring system

would not only help us to monitor the air quality but also be able to send alert signals whenever the

air quality deteriorates and goes down beyond a certain level.

In this system, NodeMCU plays the main controlling role. It has been programmed in a manner,

such that, it senses the sensory signals from the sensors and shows the quality level via led

indicators. Besides the harmful gases (such as CO2, CO, smoke, etc) temperature and humidity can

be monitored through the temperature and humidity sensor by this system. Sensor responses are fed

to the NodeMCU which displays the monitored data in the ThingSpeak cloud which can be utilized

for analyzing the air quality of that area.The following simple flow diagram (as shown in Fig. 1)

indicates the working mechanism of the IoT-based Air Pollution Monitoring System.

Fig.1. IoT based Air Pollution Monitoring System

1 | P a g e

Chapter1

INTRODUCTION

1.1 Aim of the Project

Air is getting polluted because of the release of toxic gases by industries, vehicle

emissions and increased concentration of harmful gases and particulate matter in the

atmosphere.

The level of pollution is increasing rapidly due to factors like industries, urbanization,

increase in population, vehicle use which can affect human health. Particulate matter is

one of the most important parameters having a significant contribution to the increase in

air pollution. This creates a need for measurement and analysis of real-time air quality

monitoring so that appropriate decisions can be taken in a timely period.

This paper presents real-time standalone air quality monitoring. Internet of Things (IoT)is

nowadays finding profound use in each and every sector, plays a key role in our air quality

monitoring system too. The setup will show the air quality in PPM on the webpage so that

we can monitor it very easily.

In this IoT project, we can monitor the pollution level from anywhere using your computer

or mobile.

1.2 Literature Survey

The explanation of the Air Quality Index (AQI) and its standard ranges are described in

[1]. From 0-100 ppm the atmosphere is safe for living. If the ppm level increases above

100 then it moves out of the safety zone. If the ppm value rises above 200 then it becomes

extremely dangerous for human life.

The DHT11 sensor module is used to measure the temperature and the humidity of the

surroundings [2]. The MQ-135 gas sensor is used to measure the air quality of the

surroundings [3]. It can be calibrated with respect to fresh air, alcohol, carbon dioxide,

2 | P a g e

hydrogen and methane. In this project, it has been calibrated with respect to fresh air [9],

[10].

In [4] the controlling action of NodeMCU has been described. This research has shown the

uses of C++ as the programming language for scripting the software code. It has an in-

built Wi-Fi module which allows the project to implement IoT easily. Arduino IDE is used

to implement the coding part of the project [5], [8]. ThingSpeak cloud is used for the cloud

service. It has a free version which requires a delay of 15 seconds to upload an entry in the

cloud [6], [7]. As this project uses two sensors, both of them have internal heater elements

and withdraw more power(P=V*I), so though both sensors are turned ON, their output

voltage levels vary and show unpredictable values due to insufficient power drive. So, we

used a separate power supply for the sensors as NodeMCU alone is not sufficient to drive

two sensors [9].

3 | P a g e

Chapter 2

THEORY & DESCRIPTION OF THE COMPONENTS

2.1 What is IOT?

The Internet of Things (IoT) describes the network of physical objects—“things”—that are

embedded with sensors, software, and other technologies for the purpose of connecting and

exchanging data with other devices and systems over the internet. These devices range from

ordinary household objects to sophisticated industrial tools.

The field has evolved due to the convergence of multiple technologies, including ubiquitous

computing, commodity sensors, increasingly powerful embedded systems, and machine

learning.

Traditional fields of embedded systems, wireless sensor networks, control systems,

automation (including home and building automation), independently and collectively enable

the Internet of things. In the consumer market, IoT technology is most synonymous with

products pertaining to the concept of the "smart home", including devices and appliances

(such as lighting fixtures, thermostats, home security systems, cameras, and other home

appliances) that support one or more common ecosystems, and can be controlled via devices

associated with that ecosystem, such as smartphones and smart speakers. IoT is also used in

healthcare systems.

There are a number of concerns about the risks in the growth of IoT technologies and

products, especially in the areas of privacy and security, and consequently, industry and

governmental moves to address these concerns have begun, including the development of

international and local standards, guidelines, and regulatory frameworks.

IoT devices are a part of the larger concept of home automation, which can include lighting,

heating and air conditioning, media and security systems and camera systems. Long-term

benefits could include energy savings by automatically ensuring lights and electronics are

turned off or by making the residents in the home aware of usage.

A smart toilet seat that measures blood pressure, weight, pulse and oxygen levels. A smart

home or automated home could be based on a platform or hubs that control smart devices and

appliances. For instance, using Apple's HomeKit, manufacturers can have their home

products and accessories controlled by an application in iOS devices such as the iPhone and

the Apple Watch. This could be a dedicated app or iOS native applications such as Siri. This

4 | P a g e

can be demonstrated in the case of Lenovo's Smart Home Essentials, which is a line of smart

home devices that are controlled through Apple's Home app or Siri without the need for a

Wi-Fi bridge. There are also dedicated smart home hubs that are offered as standalone

platforms to connect different smart home products and these include the Amazon Echo,

Google Home, Apple's HomePod, and Samsung's SmartThings Hub. In addition to the

commercial systems, there are many non-proprietary, open-source ecosystems; including

Home Assistant, OpenHAB and Domoticz.

Significant numbers of energy-consuming devices (e.g. lamps, household appliances, motors,

pumps, etc.) already integrate Internet connectivity, which can allow them to communicate

with utilities not only to balance power generation but also helps optimize the energy

consumption as a whole.These devices allow for remote control by users, or central

management via a cloud-based interface, and enable functions like scheduling (e.g., remotely

powering on or off heating systems, controlling ovens, changing lighting conditions, etc.).The

smart grid is a utility-side IoT application; systems gather and act on energy and power-

related information to improve the efficiency of the production and distribution of

electricity.Usingadvanced metering infrastructure (AMI) Internet-connected devices, electric

utilities not only collect data from end-users but also manage distribution automation devices

like transformers.

Another example of integrating the IoT is Living Lab which integrates and combines research

and innovation processes, establishing a public-private-people-partnership.There are

currently 320 Living Labs that use the IoT to collaborate and share knowledge between

stakeholders to co-create innovative and technological products. For companies to implement

and develop IoT services for smart cities, they need to have incentives. The governments play

key roles in smart city projects as changes in policies will help cities to implement the IoT

which provides effectiveness, efficiency, and accuracy of the resources that are being used.

For instance, the government provides tax incentives and cheap rent, improves public

transport, and offers an environment where start-up companies, creative industries, and

multinationals may co-create, share a common infrastructure and labor markets, and take

advantage of locally embedded technologies, production process, and transaction costs.The

relationship between the technology developers and governments who manage the city's

assets is key to providing open access to resources to users in an efficient way.

In this project, we have tried to implement the concept of IoT to monitor the temperature,

humidity and air quality of the surroundings

5 | P a g e

2.2 Components Used

 Hardware Components

1. NodeMCU V3

2. DHT11 Sensor Module

3. MQ-135 Gas Sensor Module

4. Veroboard(KS100)

5. Breadboard

6. Connecting Wires

7. AC-DC Adapters

8. LEDs emitting green, yellow and red colours

9. Resistors

 SOFTWARE COMPONENTS

1. ThinkSpeak Cloud

2. Arduino IDE

2.3 Brief Description of the Components

 NodeMCU V3

NodeMCU V3 is an open-source ESP8266 development kit, armed with the CH340G USB-

TTL Serial chip. It has firmware that runs on ESP8266 Wi-Fi SoC from Espressif Systems.

Whilst cheaper, CH340 is super reliable even in industrial applications. It is tested to be

stable on all supported platforms as well. It can be simply coded in Arduino IDE. It has a

very low current consumption between 15 µA to 400 mA.

The pinout Diagram of NodeMC3 is shown in Fig. 2.1.

Fig. 2.1 (Pinout Diagram of NodeMCU V3)

6 | P a g e

Fig 2.2 (Pinout Diagram of
DHT11sensor)

 DHT11 Sensor Module

The DHT11 is a temperature and humidity sensor that

gives digital output in terms of voltage. It uses a

capacitive humidity sensor and a thermistor to measure

the surrounding air.

As shown in Fig. 2.2, we need to supply a voltage of 5V

(DC) to the Vcc pin and ground it to the GND pin. The

sensor output can be easily read from the Data pin in

terms of voltage (in digital mode).

Humidity Measurement: The humidity sensing capacitor

has two electrodes with a moisture-holding substrate as a

dielectric between them as shown in Fig 2.3. Change in the capacitance value occurs with the

change in humidity levels. The IC measure, process these changed resistance values and then

converts them into digital form.

Temperature Measurement: For measuring the temperature, the DHT11 sensor uses a

negative temperature coefficient thermistor, which causes a decrease in its resistance value

with an increase in temperature. To get a wide range of resistance values, the sensor is made

up of semiconductor ceramics or polymers.

Fig 2.3(The structure of the humidity sensor)

 MQ-135 Gas Sensor Module

The material of MQ135 is SnO2, it is a special material: when exposed to clean air, it is

hardly being conducted, however, when put in an environment with combustible gas, it has a

7 | P a g e

pretty performance of conductivity. Just make a simple electronic circuit, and convert the

change of conductivity to a corresponding output signal. MQ135 gas sensor is sensitive to

Ammonia, Sulphide, Benzene steam, smoke and other harmful gases. Used for family,

surrounding environment noxious gas detection device, apply to ammonia, aromatics,

sulphur, benzene vapor, and other harmful gases/smoke, gas detection, tested concentration

range: 10 to 1000ppm. In a normal environment, the environment which doesn’t have

detected gas set the sensor’s output voltage as the reference voltage, the analog output

voltage will be about 1V, when the sensor detects gas, harmful gas concentration increases by

20ppm per voltage increase by 0.1V.

Fig 2.4 (MQ-135 Gas Sensor Module)

 Veroboard (KS100)

Veroboard is the original prototyping board.

Sometimes referred to as ‘stripboard’ or ‘matrix

board’ these offer total flexibility for hard wiring

discrete components. Manufactured from a

copper clad laminate board or Epoxy based

substrate, it is offered in both single and double-

sided formats. Vero boards are available in a

wide range of board sizes and in both imperial

and metric pitch – Veroboard is an ideal base for

circuit construction and offers even greater

adaptability using our range of terminal pins and

assemblies. As with other stripboards, in using

Veroboard, components are suitably positioned and soldered to the conductors to form the

required circuit. Breaks can be made in the tracks, usually around holes, to divide the strips

into multiple electrical nodes enabling increased circuit complexity. This type of wiring

Fig 2.5 Veroboard

8 | P a g e

board may be used for initial electronic circuit development, to construct prototypes for

bench testing or in the production of complete electronic units in small quantities.

 AC-DC Power Adapter

An AC-DC power supply or adapter is an electrical device that obtains electricity from a

grid-based power supply and converts it into a

different current, frequency, and voltage. AC-DC

power supplies are necessary to provide the right

power that an electrical component needs. The AC-

DC power supply delivers electricity to devices that

would typically run-on batteries or have no other

power source.

 LED (Red, Green & Yellow)

A light-emitting diode (LED) is a semiconductor light source that emits light when current

flows through it. Electrons in the semiconductor recombine with electron holes, releasing

energy in the form of photons. The colour of the light (corresponding to the energy of the

photons) is determined by the energy required for electrons to cross the band gap of the

semiconductor. White light is obtained by using multiple semiconductors or a layer of light-

emitting phosphor on the semiconductor device. LEDs have many advantages over

incandescent light sources, including lower power consumption, longer lifetime, improved

physical robustness, smaller size, and faster switching. In exchange for these generally

favourable attributes, disadvantages of LEDs

include electrical limitations to low voltage and

generally to DC (not AC) power, inability to

provide steady illumination from a pulsing DC

or an AC electrical supply source, and lesser

maximum operating temperature and storage

temperature. In contrast to LEDs, incandescent

lamps can be made to intrinsically run at virtually

any supply voltage, can utilize either AC or DC

current interchangeably, and will provide steady illumination when powered by AC or

pulsing DC even at a frequency as low as 50 Hz. LEDs usually need electronic support

Fig 2.6 AC-DC Power Adapter

Fig 2.7LEDs

9 | P a g e

components to function, while an incandescent bulb can and usually does operate directly

from an unregulated DC or AC power source.

 Resistors

A resistor is a passivetwo-terminalelectrical

component that implements electrical resistance as

a circuit element. In electronic circuits, resistors are

used to reduce current flow, adjust signal levels, to

divide voltages, bias active elements, and terminate

transmission lines, among other uses. High-power

resistors that can dissipate many watts of electrical

power as heat may be used as part of motor

controls, in power distribution systems, or as test

loads for generators. Fixed resistors have resistances

that only change slightly with temperature, time or operating voltage.

 Arduino IDE

The Arduino IDE is open-source

software, which is used to write

and upload code to the Arduino

boards. The IDE application is

suitable for different operating

systems such as Windows, Mac

OS X, and Linux. It supports the

programming languages C and

C++. Here, IDE stands for

Integrated Development

Environment. The program or

code written in the Arduino IDE is often called sketching. We need to connect the Genuino

and Arduino board with the IDE to upload the sketch written in the Arduino IDE software.

The sketch is saved with the extension '.ino.'

Fig 2.8 Resistors

Fig 2.9Arduino IDE

10 | P a g e

 ThingSpeak Cloud

ThingSpeak is open-source software written

in Ruby which allows users to communicate

with internet-enabled devices. It facilitates

data access, retrieval and logging of data by

providing an API to both the devices and

social network websites. ThingSpeak was

originally launched by ioBridge in 2010 as a

service in support of IoT applications.

ThingSpeak has integrated support from the

numerical computing software MATLAB

from MathWorks, allowing ThingSpeak users

to analyse and visualize uploaded data using MATLAB without requiring the purchase of a

MATLAB license from MathWorks.

2.4 Working Procedures

NodeMCU plays the main controlling role in this project. It has been programmed in a manner,

such that, it senses the sensory signals from the sensors and shows the quality level via led

indicators. The DHT11 sensor module is used to measure the temperature and the humidity of the

surroundings.With the help of the MQ-135 gas sensor module, air quality is measured in ppm.

These data are fed to the ThinkSpeak cloud over the internet. We have also provided LED

indicators to indicate the safety levels.

STEP 1. Firstly, the calibration ofthe MQ-135 gas sensor module is done. The sensor is
 set to preheat for 24 minutes. Then the software code is uploaded to the

NodeMCU followed by the hardware circuit to calibrate the sensor has been

performed.
STEP 2. Then, the DHT11 sensor is set to preheat for 10 minutes.
STEP 3. The result of calibration found in STEP 1 is used to configure the final

working code.
STEP 4. The final working code is then uploaded to the NodeMCU.
STEP 5. Finally, the complete hardware circuit is implemented.
The software codes and the hardware circuits are described in the following chapters.

Fig 2.10 ThingSpeak Cloud

11 | P a g e

Chapter 3

HARDWARE MODEL

3.1 Hardware Model to Preheat DHT11 Sensor Module

As discussed earlier, we need to preheat the DHT11 sensor so that it can work accurately.

The following steps were performed to preheat the DHT11 sensor module:

STEP 1 : The Vcc pin of the DHT11 sensor module was connected with the VU pin of

NodeMCU.

STEP 2 : The Gnd pin of the DHT11 sensor module was connected with the Gnd pin of

NodeMCU.

STEP 3 : The NodeMCU is powered with a 12V DC via AC-DC adapter for 20 minutes.

STEP 4 : The setup was then disconnected.

Fig. 3.1 shown below describes the foresaid connections.

Fig. 3.1 (Circuit Diagram to Preheat the DHT11 sensor module)

12 | P a g e

3.2 Hardware Model to Preheat and Calibrate MQ-135 Gas

Sensor Module

The following steps were performed to preheat the MQ-135 gas sensor module

STEP 1 : The Vcc pin of the MQ-135 gas sensor module was connected with the VU

pin of NodeMCU.

STEP 2 : The Gnd pin of the MQ-135 gas sensor module was connected with the Gnd

pin of NodeMCU.

STEP 3 : The NodeMCU is powered with a 12V DC via AC-DC adapter for a day.

STEP 4 : The setup was then disconnected.

Fig. 3.2 shown below describes the foresaid connections.

The following steps were performed to calibrate the MQ-135 gas sensor module

STEP 1 : The Vcc pin of the MQ-135 gas sensor module was connected with the VU

pin of NodeMCU.

STEP 2 : The Gnd pin of the MQ-135 gas sensor module was connected with the Gnd

pin of NodeMCU.

STEP 3 : The analog DATA pin of the MQ-135 gas sensor module was connected with

the A0 Pin of the NodeMCU.

Fig. 3.2(Circuit Diagram to Preheat the MQ-135 Gas sensor module)

13 | P a g e

STEP 4 : The software code to calibrate the sensor is then uploaded to the NodeMCU

and the value of R0in fresh air is collected from the serial monitor of the Arduino IDE.

STEP 5 : The setup was then disconnected.

Fig. 3.3 shown below describes the foresaid connections.

3.3 Final Hardware Model

The following steps were performed to execute the project

STEP 1 : The Vcc pin of the MQ-135 gas sensor module and DHT11 sensor module

was connected via Veroboard with an adapter delivering around 5V.

STEP 2 : The Gnd pin of the MQ-135 gas sensor module, DHT11 sensor module and

the cathode of the LED indicators was connected via Veroboard with the Gnd pin of

the NodeMCU.

STEP 3 : The analog DATA pin of the MQ-135 gas sensor module was connected with

the A0 Pin of the NodeMCU.

STEP 4 : The DATA pin of the DHT11 sensor module was connected with the D0 pin

of the NodeMCU.

STEP 5 : The anode of the three LED indicators (green, yellow, and red) were

connected to the D2, D3, and D4 pins of the NodeMCU respectively.

STEP 6 : The software code to execute the project was then uploaded to the NodeMCU.

STEP 7 : The setup was then powered with 9V DC via AC-DC adapter.

Fig. 3.3(Circuit Diagram to Calibrate the MQ-135 Gas sensor module)

14 | P a g e

It can be now turned ON/OFF as per the requirements. Fig 3.4 represents the circuit diagram

of the setup.

Fig. 3.4(Circuit Diagram of the setup)

15 | P a g e

Turn on the Green LED
and Turn OFF the Red and

Yellow LEDs

Turn on the Yellow LED
and Turn OFF the Red and

Green LEDs

Chapter 4

SOFTWARE IMPLEMENTATION

4.1 Working Algorithm

START

Turn ON the Power Switch

Read the sensed values from DHT11 sensor
module and MQ-135 Gas Sesnsor Module

Send the sensed data in the ThinkSpeak
Channel in respective fields

If ppm value
<100

If ppm value
<200

Turn on the Red LED
and Turn OFF the Green

and Yellow LEDs

If power
switch

END

Yes

Yes

ON

No

No

OFF

16 | P a g e

4.2 Calibration of MQ-135 Gas Sensor Module

 Theory of Calibration [10]

The most important step is to calibrate the sensor in the fresh air and then draw an equation

that converts the sensor output voltage value into our convenient units PPM (parts per

million). Here are the mathematical calculations derived,

Fig. 4.1 (Internal Circuit diagram of MQ-135 sensor)

From Ohm’s Law, at a constant temperature, we can derive I as follows:

I =
୚

ୖ
……………………………………………………..(1)

From Fig 4.1, eqn. 1 is equivalent to

I =
୚ୡ

ୖୱାୖ୪
 ……………………... (2)

From Fig 4.1, we can obtain the output voltage at the load resistor using the value obtained

for I and Ohm’s Law at a constant temperature, V = I x R.

VRL = [VC/ (RS + RL)] x RL ………….………………….… (3)

VRL = [(VC∗ RL)/(RS + RL)].. (4)

So now we solve for RS:

VRLx (RS + RL) = VCx RL…………………………….……. (5)

(VRLx RS) + (VRL x RL) = VC x RL.…………………..…… (6)

VRLx RS = (VC∗ RL) − (VRL∗RL)....................................... (7)

RS = {(VC∗ RL − (VRL∗ RL)} / VRL..…………………..….. (8)

17 | P a g e

RS = {(VC∗ RL) VRL} – RL ..….…………………………….. (9)

Eqn. 9 helps us to find the internal sensor resistance for fresh air.

Fig. 4.2 (Graph representing ratio vs ppm variations)

From the graph shown in fig 4.2, we can see that the resistance ratio in fresh air is a constant:

RS / R0 = 3.6…………………………..………… (10)

Value 3.6 which is mentioned ineqn. 10 is depicted in the datasheet shown in Fig 4.2. To

calculate R0, we will need to find the value of the RS in the fresh air. This will be done by

taking the analog average readings from the sensor and converting them to voltage. Then we

will use the RS formula to find R0. First of all, we will treat the lines as if they were linear.

This way we can use one formula that linearly relates the ratio and the concentration. By

doing so, we can find the concentration of a gas at any ratio value even outside of the graph’s

boundaries. The formula we will be using is the equation for a line, but for a log-log scale.

From above Figure 4.2, we try to derive the following calculations.

y = mx + b…………………..…………………….(11)

For a log-log scale, the formula looks like this:

log10y = m ∗ log10x + b…………………………….. (12)

18 | P a g e

Let’s find the slope. To do so, we need to choose 2 points from the graph. In our case, we

chose the points (200,2.6) and (10000,0.75). The formula to calculate slope m(here) is the

following:

m = {logy − log(y0)} / { logx − log(x0)}(13)

If we apply the logarithmic quotient rule, we get the following:

m = log(
୷

௬଴
) / log(

୶

௫଴
) ..(14)

Now we substitute the values for x, x0, y, and y0:

m = log(0.75/2.6) / log(10000/200).................................. (15)

m = −0.318……………………………………………………. (16)

Now that we have m, we can calculate the y-intercept. To do so, we need to choose one point

from the graph (once again from the CO2 line). In our case, we chose (5000,0.9)

log(y) = m ∗ log(x) + b………………………………………… (17)

b = log(0.9) − (−0.318) ∗ log(5000).. (18)

b = 1.13…………………………………………………………(19)

Now that we have m and b, we can find the gas concentration for any ratio with the following

formula:

log(x) = {log(y) − b} / m…………………………………….... (20)

However, in order to get the real value of the gas concentration according to the log-log plot

we need to find the inverse log of x:

x = 10 ^ [{log(y)−b] / m] ………………………………………(21)

Using eqns. 9 and 21, we will be able to convert the sensor output values into PPM (Parts per

Million). Now we developed the Code and flashed into the NodeMCU giving proper

connections.

 SOFTWARE CODE for Calibration of MQ135 Sensor:

void setup()
{
Serial.begin(9600); //Baud rate

19 | P a g e

pinMode(A0,INPUT);
}

void loop()
{
 float sensor_volt; //Define variable for sensor voltage
 float RS_air; //Define variable for sensor resistance
 float R0; //Define variable for R0
 float sensorValue=0.0; //Define variable for analog readings
Serial.print("Sensor Reading = ");
Serial.println(analogRead(A0));

for(int x = 0 ; x < 500 ; x++) //Start for loop
 {
sensorValue = sensorValue + analogRead(A0); //Add analog values of sensor 500 times
 }
sensorValue = sensorValue/500.0; //Take average of readings
sensor_volt = sensorValue*(5.0/1023.0); //Convert average to voltage
RS_air = ((5.0*1.0)/sensor_volt)-1.0; //Calculate RS in fresh air
 R0 = RS_air/3.7; //Calculate R0

Serial.print("R0 = "); //Display "R0"
Serial.println(R0); //Display value of R0
delay(1000); //Wait 1 second

}

4.3 Execution of the Main Program

#include <ESP8266WiFi.h>
#include <DHT.h>
#include <ThingSpeak.h>

DHT dht(D5, DHT11);
#define LED_GREEN D2
#define LED_YELLOW D3
#define LED_RED D4
#define MQ_135 A0
int ppm=0;
float m = -0.3376; //Slope
float b = 0.7165; //Y-Intercept
float R0 = 3.12; //Sensor Resistance in fresh air from previous code

WiFiClient client;

long myChannelNumber = 123456; // Channel id

20 | P a g e

const char myWriteAPIKey[] = "API_Key";

void setup() {
 // put your setup code here, to run once:
Serial.begin(9600);
pinMode(LED_GREEN,OUTPUT);
pinMode(LED_YELLOW,OUTPUT);
pinMode(LED_RED,OUTPUT);
pinMode(MQ_135, INPUT);
WiFi.begin("WiFi_Name", "WiFi_Password");
while(WiFi.status() != WL_CONNECTED)
 {
delay(200);
Serial.print(".");
 }
Serial.println();
Serial.println("NodeMCU is connected!");
Serial.println(WiFi.localIP());
dht.begin();
ThingSpeak.begin(client);
}

void loop() {
 float sensor_volt; //Define variable for sensor voltage
 float RS_gas; //Define variable for sensor resistance
 float ratio; //Define variable for ratio
 int sensorValue;//Variable to store the analog values from MQ-135
 float h;
 float t;
 float ppm_log; //Get ppm value in linear scale according to the the ratio value
 float ppm; //Convert ppm value to log scale
 h = dht.readHumidity();
delay(4000);
 t = dht.readTemperature();
delay(4000);

sensorValue = analogRead(gas_sensor); //Read analog values of sensor
sensor_volt = sensorValue*(5.0/1023.0); //Convert analog values to voltage
RS_gas = ((5.0*1.0)/sensor_volt)-1.0; //Get value of RS in a gas
 ratio = RS_gas/R0; // Get ratio RS_gas/RS_air
ppm_log = (log10(ratio)-b)/m; //Get ppm value in linear scale according to the ratio value
 ppm = pow(10, ppm_log); //Convert ppm value to log scale

Serial.println("Temperature: " + (String) t);
Serial.println("Humidity: " + (String) h);

21 | P a g e

Serial.println("Our desired PPM = "+ (String) ppm);

ThingSpeak.writeField(myChannelNumber, 1, t, myWriteAPIKey);
delay(20000);
ThingSpeak.writeField(myChannelNumber, 2, h, myWriteAPIKey);
delay(20000);
ThingSpeak.writeField(myChannelNumber, 3, ppm, myWriteAPIKey);
delay(20000);

 if(ppm<=100)
 {
digitalWrite(LED_GREEN,HIGH);
digitalWrite(LED_YELLOW,LOW);
digitalWrite(LED_RED,LOW);
 }
 else if(ppm<=200)
 {
digitalWrite(LED_GREEN,LOW);
digitalWrite(LED_YELLOW,HIGH);
digitalWrite(LED_RED,LOW);
 }
 else
 {
digitalWrite(LED_GREEN,LOW);
digitalWrite(LED_YELLOW,LOW);
digitalWrite(LED_RED,HIGH);
 }
delay(2000);}

22 | Page

Chapter 5

RESULTS

The working of the designed prototype has been investigated for the 5 sets of experiments as

described in the following sections

EXPERIMENT 1:

Aim: To demonstrate the working of the system in a warm and humid outdoor atmosphere.

Experimental Condition: The experiment was performed on a warm sunny day in a local

outdoor area.

Observations in ThingSpeak Cloud:

Fig: 5.1 Observations for Experiment 1

23 | Page

Setup:

Fig: 5.2 Setup for Experiment 1

Conclusion: We have taken the reference from the Samsung mobile weather app for

verifying the values. It matched with a +1.20 error with the temperature data, +5 error with the

humidity data and +0.11 error with the PPM data. Hence, we can conclude that the setup has

measured the temperature and humidity around the setup area successfully.

EXPERIMENT 2:

Aim: To demonstrate the working of the system in the presence of alcoholic gases.

Experimental Condition: The experiment was performed indoor in the presence of

alcoholic gases. Drops of an alcoholic mixture (hand sanitiser) were used to produce alcoholic

vapours.

Observations in ThingSpeak Cloud:

24 | Page

Fig: 5.3 Observations for Experiment 2

Setup:

Fig: 5.4 Setup for Experiment 2

Conclusion:

We can observe from the results that the presence of alcohol vapours near the setup can be

easily detected by the system. We have taken the reference from the Samsung mobile weather

app for verifying the values. It matched with a +1.30 error with the temperature data, +5 error

with the humidity data and +0.25 error with the PPM data. Hence, it can be concluded that we

can detect the presence of alcoholic vapours with the help of this monitoring system.

EXPERIMENT 3:

Aim: To demonstrate the working of the system in smoky conditions.

Experimental Condition: The experiment was performed in the presence of smoke

coming from an incense stick placed near the setup.

Drops of
Alcoholic
Solution

25 | Page

Observations in ThinkSpeak Cloud

Fig: 5.5 Observations for Experiment 3

Setup:

Fig: 5.6 Setup for Experiment 3

Ignited
Incense
Stick

26 | Page

Conclusion:

We can observe from the results that the presence of smoke near the setup can be easily detected

by the system. We have taken the reference from the Samsung mobile weather app for verifying

the values. It matched with a +1.80 error with the temperature data, +4 error with the humidity

data and -0.7 error with the PPM data. Hence, it can be concluded that we can detect the

presence of smoke with the help of this monitoring system.

EXPERIMENT 4:

Aim: To demonstrate the working of the system in a warm and humid outdoor atmosphere.

Experimental Condition: The experiment was performed at night.

Observations in ThingSpeak Cloud:

Fig: 5.7 Observations for Experiment 4

27 | Page

Setup:

Fig: 5.8 Setup for Experiment 4

Conclusion:

We have taken the reference from the Samsung mobile weather app for verifying the values. It

matched with a +1.20 error with the temperature data, +5 error with the humidity data and -

0.08 error with the PPM data. Hence, we can conclude that the setup has measured the

temperature and humidity around the setup area successfully.

EXPERIMENT 5:

Aim: To demonstrate the working of the system in an air-conditioned indoor atmosphere.

Experimental Condition: The experiment was performed at room temperature.

Observations in ThingSpeak Cloud:

28 | Page

 Fig: 5.9 Observations for Experiment 5

Setup:

Fig: 5.10 Setup for Experiment 5

Conclusion:

We have taken the reference from the Samsung mobile weather app for verifying the values. It

matched with a +0.6 error with the temperature data, +2 error with the humidity data and -0.03

error with the PPM data. Hence, we can conclude that the setup has measured the temperature

and humidity around the setup area successfully.

Table 5.1: Experimental Results

Expt.
No.

Temperature (in celsius) Humidity (in %) Air Quality (in ppm)

Project
Reading

Samsung
Weather

App
Reading

Error Project
Reading

Samsung
Weather App

Reading
Error Project

Reading

Samsung
Weather

App
Reading

Error

1 34.2 33 1.2 70 65 5 8.61 8.5 0.11
2 33.3 32 1.3 70 65 5 42.25 42 0.25
3 33.8 32 1.8 74 70 4 52.3 53 -0.7
4 34.2 33 1.2 74 69 5 4.26 4.34 -0.08
5 22.6 22 0.6 59 57 2 0.67 0.7 -0.03

29 | P a g e

Chapter 6

CONCLUSION

In this project IoT based on measurement and display of Air Quality Index (AQI), Humidity

and Temperature of the atmosphere have been performed. From the information obtained

from the project, it is possible to calculate Air Quality in PPM. The disadvantage of the

MQ135 sensor is that specifically it can’t tell the Carbon Monoxide or Carbon Dioxide level

in the atmosphere, but the advantage of MQ135 is that it is able to detect smoke, CO, CO2,

NH4, etc harmful gases.

After performing several experiments, it can be easily concluded that the setup is able to

measure the air quality in ppm, the temperature in Celsius and humidity in percentage with

considerable accuracy. The results obtained from the experiments are verified through

Google data. Moreover, the led indicators help us to detect the air quality level around the

setup. However, the project experiences a drawback that is it cannot measure the ppm values

of the pollutant components separately. This could have been improved by adding gas sensors

for different pollutants. But eventually, it would increase the cost of the setup and not be a

necessary provision to monitor the air quality. Since it’s an IOT-based project, it will require

a stable internet connection for uploading the data to the ThinkSpeak cloud. Therefore, it is

possible to conclude that the designed prototype can be utilized for air quality, humidity and

temperature of the surrounding atmosphere successfully.

30 | P a g e

REFERENCES

[1] https://gaslab.com/blogs/articles/carbon-monoxide-levels

[2] https://www.instructables.com/Measuring-Humidity-Using-Sensor-DHT11

[3] https://pdf1.alldatasheet.com/datasheet-pdf/view/1307647/WINSEN/MQ135.html

[4] https://components101.com/development-boards/nodemcu-esp8266-pinout-features-

and-datasheet

[5] https://www.arduino.cc

[6] https://thingspeak.com

[7] Pasha, S. (2016). ThingSpeak based sensing and monitoring system for IoT with Matlab

Analysis. International Journal of New Technology and Research, 2(6).

[8] Kumar, N. S., Vuayalakshmi, B., Prarthana, R. J., & Shankar, A. (2016, November).

IOT based smart garbage alert system using Arduino UNO. In 2016 IEEE Region 10

Conference (TENCON) (pp. 1028-1034). IEEE.

[9] IoT based Air Quality monitoring system using MQ135 & MQ7 with Machine Learning

analysis by Kinnera Bharath Kumar Sai M.Tech CSE VIT University, Vellore Subhaditya

Mukherjee B.Tech CSE VIT University, Vellore Dr. Parveen Sultana H Associate

Professor Department of CSE, VIT University.

[10] https://www.codrey.com/electronic-circuits/how-to-use-mq-135-gas-sensor

31 | P a g e

Appendix

A.1 PIN DESCRIPTION OF NODEMCU

Pinout diagram of the NodeMCU:

Description:

Pin Category Name Description

Power Micro-USB,

3.3V, GND, Vin

Micro-USB: NodeMCU can be powered through the

USB port

3.3V: Regulated 3.3V can be supplied to this pin to

power the board

GND: Ground pins

Vin: External Power Supply

32 | P a g e

Control Pins EN, RST The pin and the button reset the microcontroller

Analog Pin A0 Used to measure analog voltage in the range of 0-3.3V

GPIO Pins GPIO1 to

GPIO16

NodeMCU has 16 general purpose input-output pins on

its board

SPI Pins SD1, CMD,

SD0, CLK

NodeMCU has four pins available for SPI

communication.

UART Pins TXD0, RXD0,

TXD2, RXD2

NodeMCU has two UART interfaces, UART0 (RXD0 &

TXD0) and UART1 (RXD1 & TXD1). UART1 is used

to upload the firmware/program.

I2C Pins NodeMCU has I2C functionality support but due to the

internal functionality of these pins, you have to find

which pin is I2C.

33 | P a g e

A.2 DESCRIPTION OF SOFTWARE LIBRARIES USED

ESP8226WiFi Library

The ESP8266WiFi library provides a wide collection of C++ methods (functions) and

properties to configure and operate an ESP8266 module.

Commands used are as follows:

 WiFi.begin(“ WiFi Name”, “WiFiPassword”);  Command to connect with WiFi

network.

 WiFi.status();  To check the status of the connection.

If it returns – WL_CONNECTED  WiFi is connected

If it returns – WL_IDLE_STATUS  WiFi is connected but no internet found

If it returns – WL_CONNECT_FAILED  WiFi is not connected

DHT11 sensor Library

The DHT sensor library provides a wide collection of C++ methods (functions) and

properties to configure and operate the DHT11 sensor module.

The commands used are as follows:

 DHT dht(D5, DHT11);  Set the pin for reading data.

 dht.begin(); Command to connect with DHT11 sensor module.

 dht.readTemperature();  Returns the value of the temperature in Celsius.

 dht.readHumidity();  Returns the value of humidity in percentage.

ThinkSpeak Library

The ThinkSpeak library provides a wide collection of C++ methods (functions) and

properties to configure and operate the ThinkSpeak cloud.

The commands used are as follows:

 ThingSpeak.writeField(myChannelNumber, 1, t, myWriteAPIKey);  To upload

data in the ThinkSpeak Field.

34 | P a g e

A.3 COST ESTIMATION OF THE PROJECT

For making the project we have used the following components (as mentioned in Table 2). As

per the pricing on the online websites for electronic components, we have formulated a cost

estimation.

Table 2: Cost Estimation of the Project

Components Price (in Rs)
NodeMCU V3 288

DHT11 Sensor Module 120

MQ135 Gas Sensor Module 135

Connecting Wires 60

LEDs (Red, Green & Yellow) 9

AC-DC Power Adapter 120

Female PCB Berg Terminal and cable 80

Veroboard 100

Breadboard 70

Total 982

